
JavaScript Grammar – Edition I – March 23, 2019

Title: JavaScript Grammar
Edition: I – March 23, 2019
Genre: Software Development
Publisher: Learning Curve Books
Imprint: Independently published
ISBN: 9781091212169
Author: Greg Sidelnikov (greg.sidelnikov@gmail.com)

Editors, volunteers, contributors: Grace Neufeld.

Primary purpose of Learning Curve Books publishing company is
to provide effective education for web designers, software engineers and all readers
who are interested in being edified in the area of web development.

This edition of JavaScript Grammar was created to speed up the learning process
of JavaScript – the language for programming websites, applications and robots!

For questions and comments about the book you may contact the author or send
an email directly to our office at the email address mentioned below.

Special Offers & Discounts Available
Schools, libraries and educational organizations may qualify for special prices.
Get in touch with our distribution department at hello@learningcurvebook.net

Learning Curve Books is a registered trademark of Learning Curve Books, LLC.

License is required to distribute this volume in any form regardless of format or
price. All graphics and content is copyright of Learning Curve Books, LLC. unless
where otherwise stated.

c©2018 – 2019 Learning Curve Books, LLC.

JavaScript Grammar

0.1 Foreword . 1

1 Presentation Format 3

1.1 Creative Communication . 3

1.1.1 Theory . 4

1.1.2 Practical Examples . 4

1.1.3 Source Code . 4

1.1.4 Color-Coded Diagrams 4

1.1.5 Dos and Dont’s . 6

2 Chrome Console 7

2.0.1 Beyond Console Log . 7

2.0.2 console.dir . 8

2.0.3 console.error . 9

2.0.4 console.time() and console.timeEnd() 9

2.0.5 console.clear . 10

3 Welcome To JavaScript 11

3.1 Entry Point . 11

3.1.1 Dos and Dont’s . 12

3.1.2 Dynamic Import 17

3.2 Strict Mode . 17

3.3 Literal Values . 19

3.4 Variables . 21

3.5 Passing Values By Reference . 23

3.6 Scope Quirks . 24

4 Statements 27

4.0.1 Evaluating Statements 27

4.0.2 Expressions . 29

5 Primitive Types 31

5.0.1 boolean . 33

5.0.2 null . 33

5.0.3 undefined . 33

5.0.4 number . 34

5.0.5 bigint . 35

5.0.6 typeof . 36

5.0.7 string . 37

5.0.8 Template Strings 38

5.0.9 Symbol . 40

5.0.10 Executing Methods On Primitive Types 46

6 Type Coercion Madness 47

6.0.1 Examples of Type Coercion 48

6.0.2 Adding Multiple Values 53

6.0.3 Operator Precedence . 53

6.0.4 String To Number Comparison 54

6.0.5 Operator Precedence & Associativity Table 56

6.0.6 L-value and R-value . 58

6.0.7 null vs undefined . 59

7 Scope 61

7.0.1 Scope . 62

7.1 Variable Definitions . 62

7.1.1 Variable Types . 70

7.1.2 Scope Visibility Differences 70

7.1.3 const . 76

7.1.4 const and Arrays . 76

7.1.5 const and Object Literals 76

7.1.6 Dos and Dont’s . 77

8 Operators 79

8.0.1 Arithmetic . 79

8.0.2 Assignment . 81

8.0.3 String . 81

8.0.4 Comparison . 82

8.0.5 Logical . 82

8.0.6 Bitwise . 83

8.0.7 typeof . 84

8.0.8 Ternary (?:) . 85

8.0.9 delete . 85

8.0.10 in . 85

9 ...rest and ...spread 87

9.0.1 Rest Properties . 87

9.0.2 Spread Properties . 89

9.0.3 ...rest and ...spread . 89

9.1 Destructuring Assignment . 94

10 Closure 99

10.0.1 Arity . 107

10.0.2 Currying . 107

11 Loops 109

11.0.1 Types of loops in JavaScript 109

11.1 for loops . 112

11.1.1 0-index based counter 112

11.1.2 The Infinite for Loop . 112

11.1.3 Multiple Statements . 113

11.2 for...of Loop . 118

11.2.1 for...of and Generators 118

11.2.2 for...of and Strings . 120

11.2.3 for...of and Arrays . 120

11.2.4 for...of and Objects . 121

11.2.5 for...of loops and objects converted to iterables 122

11.3 for...in Loops . 123

11.4 While Loops . 123

11.4.1 While and continue . 124

12 Arrays 127

12.0.1 Array.prototype.sort() 127

12.0.2 Array.forEach . 129

12.0.3 Array.every . 130

12.0.4 Array.some . 131

12.0.5 Array.filter . 131

12.0.6 Array.map . 132

12.0.7 Array.reduce . 132

12.0.8 Practical Reducer Ideas 133

12.0.9 Dos and Dont’s . 134

12.0.10 Array.flat() . 136

12.0.11 Array.flatMap() 136

12.0.12 String.prototype.matchAll() 137

12.0.13 Dos and Dont’s . 141

12.0.14 Comparing Two Objects 142

12.0.15 Writing arrcmp . 144

12.0.16 Improving objcmp . 145

12.0.17 Testing objcmp on a more complex object 146

13 Functions 149

13.1 Functions . 149

13.1.1 Function Anatomy . 150

13.1.2 Anonymous Functions 151

13.1.3 Assigning Functions To Variables 151

13.2 Origin of this keyword . 156

14 Higher-order Functions 157

14.0.1 Theory . 157

14.0.2 Definition . 159

14.0.3 Abstract . 159

14.0.4 Iterators . 160

14.0.5 Dos and Dont’s . 164

15 Arrow Functions 165

15.0.1 Arrow Function Anatomy 168

16 Creating HTML Elements Dynamically 177

16.0.1 Setting CSS Style . 178

16.0.2 Adding Elements To DOM with .appendChild method . 179

16.0.3 Writing A Function To Create Elements 180

16.0.4 Creating objects using function constructors 184

17 Prototype 185

17.0.1 Prototype . 186

17.0.2 Prototype on Object Literal 187

17.0.3 Prototype Link . 188

17.0.4 Prototype Chain . 189

17.0.5 Method look-up . 190

17.0.6 Array methods . 190

17.1 Parenting . 192

17.1.1 Extending Your Own Objects 192

17.1.2 constructor property . 193

17.1.3 Function . 194

17.2 Prototype In Practice . 195

17.2.1 Object Literal . 195

17.2.2 Using Function Constructor 197

17.2.3 Prototype . 198

17.2.4 Creating objects using Object.create 199

17.2.5 Back To The Future . 200

17.2.6 Constructor Function 201

17.2.7 Along came new operator 203

17.2.8 The class keyword 204

18 Object Oriented Programming 205

18.1 Ingredient . 205

18.2 FoodFactory . 206

18.3 Vessel . 206

18.4 Burner . 207

18.5 Range Type and The Polymorphic Oven 208

18.6 Class Definitions . 209

18.6.1 print.js . 209

18.6.2 Ingredient . 210

18.6.3 FoodFactory . 210

18.6.4 Fridge . 211

18.6.5 convert energy to heat 212

18.6.6 Vessel . 213

18.6.7 Burner . 215

18.6.8 Range . 216

18.6.9 Putting It All Together 219

19 Events 223

19.0.1 Browser Events . 223

19.0.2 Synthetic Events . 224

19.0.3 Event Anatomy . 228

19.0.4 setTimeout . 229

19.0.5 setInterval . 229

19.0.6 Intercepting Browser Events 230

19.0.7 Display Mouse Position 230

19.0.8 Universal Mouse Event Class 231

20 Network Requests 235

20.0.1 Callback Hell . 238

20.0.2 Promises . 239

20.0.3 Promise.resolve . 239

20.0.4 .then . 240

20.0.5 .catch . 240

20.0.6 .finally . 240

20.0.7 Promise.reject . 241

20.0.8 Putting It All Together 241

20.0.9 Promise.all . 242

20.0.10 Promise Anatomy . 244

20.0.11 Final Words . 244

20.0.12 Axios . 245

20.1 Fetch API . 246

20.1.1 Fetch POST Payload 246

20.2 async / await . 247

20.2.1 await . 249

20.2.2 async / await with try-catch 250

20.2.3 Final Words . 251

20.3 Generators . 252

20.3.1 yield . 252

20.3.2 Catching Errors . 253

21 Event Loop 255

22 Call Stack 259

22.1 Execution Context . 261

22.2 Execution Context In Code . 262

22.2.1 Window / Global Scope 263

22.2.2 The Call Stack . 263

22.2.3 .call(), .bind(), .apply() 266

22.2.4 Stack Overflow . 267

0.1 Foreword

We often think of the word ”feature” as something that belongs to software prod-
ucts and services. Modern apps such as Instagram and Twitter have a ”Follow”
feature, for example. Uploading a photo to your account is another feature!

But computer languages have features too. A function is a feature. A for loop
is a feature. So is the class keyword – all are computer language features.

In JavaScript some of these features are borrowed from other languages, while
many remain unique to its own design. Features such as this, class and const
may appear similar to their original C++ implementation, but in many cases they
are used in a completely unique way to JavaScript.

JavaScript is an evolving language. When EcmaScript 6 came out in June 2015 the
language experienced a Cambrian explosion of new features that radically changed
how JavaScript code should be written.

New features like ...rest and ...spread syntax, arrow functions, template strings,
object destructuring are commonplace in modern JavaScript code. But just a
few years ago, even seasoned JavaScript developers with over a decade experience
with the language couldn’t conceive of such concepts.

Functional Programming started to creep into JavaScript community seemingly at
the speed of light and higher-order functions (.map, .filter, .reduce) tied to Array
methods, that remained dormant for many years, have gained increased popularity.

But JavaScript is a multi-paradigm language. Programmers who come from tra-
ditional Object Oriented Programming background will find themselves at home
after induction of the class keyword and a separate constructor function that
provides an alternative to the classic JavaScript object-function constructors.

The ES6 specification triggered a whole new breed of coders who have developed
more respect for a language that once was used to write primitive DOM scripts.

JavaScript engines that run in browsers (Chrome browser’s V8, for example) have
matured and JavaScript is no longer looked at as a simple scripting language.

It’s a whole new era of JavaScript development. Today, you may often stumble
upon a video titled Build a robot with JavaScript on YouTube. It is even
possible to build desktop applications for Windows 10 almost entirely in JavaScript.

1

JavaScript frameworks and libraries like React and Vue abstract away some of
the classic JavaScript principles, making it quicker to build modular applications.

But this often comes at the expense of never having to understand vanilla JavaScript
at the beginner level – its common grammar.

JavaScript Grammar was written to solve this problem by using carefully chosen
subjects that, hopefully, match a natural learning experience. Content of this book
will try to remain faithful to dynamic nature of JavaScript specification.

Finally, it is hoped that this book will encourage the reader to take the next step
in the direction of more advanced subjects in the future.

2

Chapter 1

Presentation Format

This book was structured with continuity in mind: it is meant to be read from
first to last page in a consecutive order. However, it can also be used as a desk
reference for looking up isolated examples when you need them.

JavaScript Grammar is not a complete JavaScript reference or manual. But,
this is probably a good thing. The subjects were reduced to only what’s important
in modern-day JavaScript environment.

Namely: imports, classes, constructors, key principles behind functional program-
ming, including many features ranging from ES5 - ES10 are covered in this book.

The distinction between ”ES” specifications has become less relevant. All of it is
JavaScript. But just to give the reader a bit of perspective...

Sometimes you will see labels like this one.

This simply means that this feature was added to JavaScript as part of the Ec-
maScript’s ES10 specification.

1.1 Creative Communication

Some of JavaScript is easy, some of it is difficult. Not everything can be explained
by source code alone. Some things are based on intangible ideas or principles.

3

Throughout this tutorial book you will come across many creative communication
devices, designed to make the learning process a bit easier and perhaps more fun.

One example of that is color-coded diagrams.

1.1.1 Theory

Not all subjects require extensive theory. On the other hand, some things won’t
make any sense without it. Additional discussion will be included, where it becomes
absolutely necessary, in order to fully understand a particular concept.

1.1.2 Practical Examples

A practical example follows the theoretical discussion, so we can actually see the
implementation. It will usually be explained by a source code listing.

1.1.3 Source Code

Source code listings will be provided to cement the foundational principles from
preceding text.

This is an example of instantiating sparrow object from Bird class and using
some of its methods.

1.1.4 Color-Coded Diagrams

A significant amount of effort went into creating diagrams describing fundamental
ideas behind JavaScript. They were designed for communicative value, hopefully

4

they will speed up the learning process in places where hard to grasp abstract ideas
need to be explained visually.

There are two types of diagrams in this book: abstract ideas and source code
close ins.

Abstract ideas

Sometimes there isn’t a way to explain an abstract idea or its structure without a
diagram. In places where that’s the case, a diagram will be shown.

Figure 1.1: Class constructor is an object-function of type Function.

Here is another diagram visualizing anatomy of a JavaScript function:

Figure 1.2: JavaScript function anatomy.

5

Code close ins

Most of the source code is accompanied by source code listings.

But when we need to close in on a particular important subject, a slightly larger
diagram with source code and additional color-coded highlighting will be shown.
For example, here is exploration of an anonymous function when used in the context
of a event callback function:

Figure 1.3: Anonymous function used as a setTimeout event callback.

In this case the source code will be missing line numbers because it’s not important.

Content

We won’t spend much book space or your time on countless listings of functions
and available methods on every single object. This type of information can be
easily looked up and practiced online on demand from Mozilla’s MDN web docs,
W3Schools and StackOverflow.

Much of content of this book is tailored to modern JavaScript development, which
leans toward >= EcmaScript6 specification, functional programming: the use of
higher-order Array functions, arrow functions and understanding execution context.

1.1.5 Dos and Dont’s

An occasional Dos and Donts section will appear with insightful tips.

6

Chapter 2

Chrome Console

2.0.1 Beyond Console Log

Many programmers only know Chrome’s console.log but the console API con-
tains few other methods that have practical use, especially when time is of essence.

copy(obj) function

Copying JSON representation of an existing object to your copy buffer:

Now the JSON is in your copy-paste buffer, you can paste it into any text editor.

In this example x is a simple self-created object. But imagine a situation where a
much more complex object is returned from a database API.

Note: Only JSON is returned, this means that methods will not make it to the
copy buffer. (JSON string format does not support methods, only properties.)

7

2.0.2 console.dir

If you want to take a look at all object’s properties and methods, you can print it
out directly into the console using console.dir method:

What’s fantastic is that you can even output DOM elements:

8

2.0.3 console.error

The great thing about console.error is that it also provides the stack trace:

2.0.4 console.time() and console.timeEnd()

You can track the amount of time between function calls. This can be helpful
when optimizing code:

Console output:

9

2.0.5 console.clear

Printing Objects

In JavaScript all objects have .toString() method. When providing an object
to console.log(value) it can print it either as an object, or as a string.

10

Chapter 3

Welcome To JavaScript

3.1 Entry Point

Every computer program has an entry point.

You can start writing your code directly into <script> tags. But this means it
will be executed instantly and simultaneously as the script is being downloaded
into the browser, without concern for DOM or other media.

This can create a problem because your code might be accessing DOM elements
before they are fully downloaded from the server.

To remedy the situation, you may want to wait until the DOM tree is fully available.

11

DOMContentLoaded

To wait on the DOM event, add an event listener to the document object. The
name of the event is DOMContentLoaded.

Figure 3.1: Here the entry point is your own custom function load(). This is a
good place for initializing your application objects.

You can rename the load function to start, ready or initialize – it doesn’t matter.

What matters is that at this entry point we’re 100% guaranteed that all DOM
elements have been successfully loaded into memory and trying to access them
with JavaScript will not produce an error.

3.1.1 Dos and Dont’s

Do not write your code just in <script> tags, without entry point function.

Do use the entry point to initialize the default state of your data and objects.

Do make your program entry point either DOMContentLoaded, readyState or
the native window.onload method for waiting on media (see next,) depending on
whether you need to wait for just the DOM or the rest of media.

12

.readyState

For added safety you might also check the value of readyState property before
attaching the DOMContentLoaded event:

Figure 3.2: Check document.readyState

DOM vs Media

We’ve just created a safe place for initializing our application. But because DOM
is simply a tree-like structure of all HTML elements on the page, it usually becomes
available before the rest of the media such as images and various embeds.

Even though <image src = "http://url" /> is a DOM element, the URL con-
tent specified in image’s src attribute might take more time to load.

To check if any non-DOM media content has finished downloading we can overload
the native window.onload event as shown in the following example.

13

window.onload

With window.onload method, you can wait until all images and similar media
have been fully downloaded:

Including External Scripts

Let’s say we have the following definitions in my-script.js file:

Then you can add them into your main application file as follows:

Main JavaScript application file – index.html, for example

14

Import

Starting from ES6 we should use import (and export) keyword to import variables,
functions and classes from an external file.

Let’s say we have a file mouse.js and it has following definition of a Mouse class.

In order to make a variable, object or a function available for export, the export
keyword must be prepended to its definition.

But that’s not enough! The Mouse constructor function will be exported as long
as a matching import is available in main application file.

Not everything in a module will be exported. Some of the items will (and should)
remain private to it. Be sure to prepend export keyword to anything you want to
export from the file. This can be any named definition.

script type = ”module”

In order to export the Mouse class and start using it in the application, we must
make sure the script tag’s type attribute is changed to ”module” (this is required.)

Figure 3.3: Now we can safely access Mouse class, instantiate a new object from
it and access its properties and methods.

15

Importing And Exporting Multiple Definitions

It’s uncommon for a complex program to import only one class, function or variable.

Here is an example of how to import multiple items from two imaginary files.

The Mouse and Keyboard classes were imported together (separated by comma)
from input.js file. They were instantiated as separate objects then and their
properties were accessed to grab some data.

We’ve also imported some math functions add, subtract, divide and multiply
from math.js. The math library file source code is shown below. After defining 4
functions we can export multiple definitions as follows:

Figure 3.4: Exporting multiple definitions from math.js

16

3.1.2 Dynamic Import

Imports can be assigned to a variable since EcmaScript 10 (may not be available
in your browser yet, at the time of this writing.)

3.2 Strict Mode

The strict mode is a feature available since ECMAScript 5 that allows you to place
your entire program, or an isolated scope, in a ”strict” operating context. This
strict context prevents certain actions from being taken and throws an exception.

For example, in strict mode you cannot use undeclared variables. Without strict
mode, using an undeclared variable will automatically create that variable.

Without strict mode, certain statements might not generate an error at all – even
if they are not allowed – but you wouldn’t know something was wrong.

Figure 3.5: You cannot use delete keyword to delete variables in JavaScript

Without strict mode on, code above will fail silently, variable will not be deleted,
and delete variable will return false but your program will continue to run.

But what will happen in strict mode?

17

Figure 3.6: In this example strict mode is enabled for entire global scope.

Figure 3.7: In strict mode you will generally become aware of more errors. For
example, the line delete variable can be removed completely without having
any impact on the program.

Limiting ”strict mode” To A Scope

The strict mode doesn’t have to be enabled globally. It is possible to isolate a
single block (or function) scope to strict mode:

Final Words

In a professional environment, it is common to have strict mode on, because it
can potentially prevent many bugs from happening and generally supports better
software practice.

When learning JavaScript for the first time, you might want to keep it off to avoid
encountering errors caused by something that requires advanced understanding.

18

3.3 Literal Values

The literal representation of a number can be the digit 1, 25, 100 and so on. A
string literal can be "some text";

You can combine literals using operators (+,-,/,*, etc.) to produce a single result.

For example, to perform a 5 + 2 operation, you will simply use the literal number
values 5 and 2:

Combine two strings to produce a single sentence:

Add two literal values of different types to produce a coerced value:

There is a literal value for just about everything in JavaScript:

There is an array literal [] and object literal {}.
You can add {} + [] without breaking the program, but the results will not be
meaningful. These types of cases are usually non-existent.

Note that a JavaScript function can be used as a value. You can even pass them
into other functions as an argument. We don’t usually refer to them as function
literals, however, but rather function expressions.

19

Each literal value usually has a constructor function associated with it.

The typeof(value) function can be used to determine type of the literal value.
You can also use typeof as stand-alone keyword without parenthesis: typeof x.

For example typeof 1 will return string "number" and typeof {} will return string
"object". But ”object” doesn’t mean its an object-literal – for example – typeof
new Number also returns "object" as does typeof new Array.

It’s a bit unfortunate that there is no "array" (you will get "object" instead)
but there is a classic workaround. To check if a value is an array, first check if its
typeof returns "object", but also check for presence of length property on the
object – because it exists only on arrays.

Number(1) vs new Number(1)

You can instantiate a value using constructor function associated with the type of
that value. But using literal values is more common:

The new keyword will be explained toward end of this book.

20

3.4 Variables

Value Placeholders

Variables are placeholder names for different types of values.

Figure 3.8: Variable declaration is definition + assignment.

Keywords for defining variables include: var, let and const: but they don’t
determine variable’s type, only how they can be used. We’ll go over the rules in
more detail at a later time. Here are some examples:

Figure 3.9: Here are some of the most common assignments you will come across.

When you assign 1 to a variable name the type of that variable automatically
becomes ”number”. If the value were a string, the variable type would be ”string”.

21

Dynamic Typing

JavaScript is a dynamically-typed language. It means that variables created using
var or let keywords can be dynamically re-assigned to a value of another type at
some point later in your JavaScript program.

In statically-typed languages doing that would generate an error.

Definition Or Declaration?

In the previous diagram we looked at a JavaScript variable declaration.

Some will argue that the definition is the declaration. But this type of logic
comes from statically typed languages, of which JavaScript is not. In statically
typed languages the declaration determines the type of the variable – it’s what
the compiler needs to allocate memory for the variable type (left hand side). But
JavaScript is a dynamically typed language – the variable type is determined by
the the type of value itself (right hand side).

Hence, the confusion. Is the left side the declaration, definition or both? These
types of details are more relevant in statically typed languages, but in JavaScript
(and other dynamically-typed languages) it might not make much sense.

22

3.5 Passing Values By Reference

Copying data from place to place is a common operation in computing. It is
natural to think that when we assign a value to a variable from another variable,
a copy is made.

But JavaScript assigns values by reference without actually making a copy of the
original value. Here is an example:

Here we created variable x and assigned object literal {p: 1} to it.

This means that from now on the value of x.p will be equal 1.

A new variable called y was created and assigned x to it.

Now x has become a reference to y, not a copy.

From now on, any changes made to x will be also reflected in y.

This is why when we changed value of x.p to 2, y.p was also changed.

You can say that now y ”points” to the original object assigned to x variable.

Only one copy of {p: 1} existed in computer memory all along from start to finish
of this code block. Multiple assignments are chained by reference:

Figure 3.10: A chain of references without a single copy of original value.

23

3.6 Scope Quirks

JavaScript has two known quirks when it comes to scope rules, that you might
want to know about to save debugging time later.

Quirk 1 – let and const inside function vs. global variable

A variable defined using let or const keywords inside a function cannot coexist
with global variable of the same name.

Figure 3.11: ReferenceError will happen if local variable a is defined inside the
function body using either let or const keywords.

The let keyword doesn’t hoist definitions, and we have a global variable a, so
logically, inside function x() variable a should be taken from global scope, before
it is defined later with let a = 1 but that’s not what happens.

If variable a already exists inside a function (and it’s defined using let or const
keywords) then using a, prior its definition within the function will produce Refer-
enceError, even if global variable a exists!

24

Quirk 2 – var latches onto window/this object, let and const don’t

In global scope this reference points to instance of window object / global context.

When variables are defined using var keyword they become attached to window
object, but variables defined using let (and const) are not.

25

26

Chapter 4

Statements

4.0.1 Evaluating Statements

A statement is the smallest building block of a computer program. In this chapter
we will explore a few common cases.

Definitions made with var, let or const keywords return undefined because they
behave only as value assignments: the value is simply stored in the variable name:

Figure 4.1: The assignments statement itself produces undefined, while the value
is stored in variable a.

If, however, the assigned variable a is used as a stand-alone statement afterwards,
it will produce value of 1:

Figure 4.2: A statement that produces a single value other than undefined can
be referred to as an expression.

27

Statements usually produce a value. But when there isn’t anything to return, a
statements will evaluate to undefined, which can be interpreted as ”no value.”

Figure 4.3: An empty statement with semicolon evaluates to undefined. Any
statement that doesn’t produce a value will evaluate to undefined – variable
assignments (006-010) or function definitions (017), for example.

Some evaluation rules make sense, but special cases should probably be just mem-
orized. For example, what would it mean to evaluate an empty object literal?
According to JavaScript it should evaluate to undefined.

Yet, empty array brackets [] (a close relative to empty object literal) evaluate to
an empty array: [], and not undefined.

28

4.0.2 Expressions

Here is an expression: 1 + 1 that produces the value of 2:

Figure 4.4: Expressions don’t have to be variable definitions. You can create them
by simply using some literal values in combination with operators.

There is another distinct types of an expression in JavaScript:

Function f() evaluates to value 1, because it returns 1. This is why f() is often
referred to as a function expression.

29

30

Chapter 5

Primitive Types

31

Primitive Types

JavaScript has 7 primitive types: null, undefined, number, bigint, string,
boolean and symbol. Primitives helps us work with simple values such as strings,
numbers and booleans. Let’s take a look at some of their possible values:

Some of the primitives have a constructor function associated with it.

Here’s a number of primitives assigned to several variable names:

Numbers, strings and booleans are basic value units. You can write them out
in literal form: a number can be 123 or 3.14, a string can be "string", or
a template string: ‘I have {$number} apples.‘ (note the back-tick quotes,
which allow you to embed variables into the string dynamically.) A boolean can
only be either true or false. You can combine primitive types using operators,
pass them to functions or assign them as values to object properties.

Number(), BigInt(), String() and Boolean() are primitive constructor func-
tions. We’ll explore constructor functions and classes at a proper time in the
book. First, let’s briefly go over each primitive individually.

32

5.0.1 boolean

The boolean primitive can be assigned either true or false value.

5.0.2 null

Running typeof operator on null will say it’s an ”object”.

Some believe this is a bug in JavaScript because null is not an object since it
doesn’t have a constructor. And they are probably right...

5.0.3 undefined

Undefined is a type of its own. It’s not an object. Just a value JavaScript will use
when you named a variable but don’t assign a value to it. Your hoisted variables
will also be automatically assigned a value of undefined.

33

5.0.4 number

The number primitive helps us work with values in the numeric domain.

You can define negative and positive values, decimals (more commonly known as
floating-point numbers.) There is even a negative and positive Infinity value.
This makes more sense if you have some background in math.

NaN is technically a non-numeric value a statement can evaluate to. It’s available
directly from the Number.NaN But literally, it is exactly what it says it is: neither
"number" primitive nor Number() object. (It could be a "string", for example.)

Using typeof operator on a numeric value will produce "number" (It helps to note
that the return value is in string format.)

This example shows distinction between primitive literal value (-1, 5, 7, etc.) and
the Number object. Once instantiated, the value is no longer exactly a literal but
an object of that type.

To get ”number” type from the object use typeof on the valueOf method as
seen in the previous example typeof number.valueOf();

34

5.0.5 bigint

BigInt was added in EcmaScript10 and wasn’t available until Summer 2019.

In the past the maximum value of a number created using a number literal or the
Number() constructor was stored in Number.MAX SAFE INTEGER and was equal
to 9007199254740991.

A bigint type allows you to specify numbers greater than Number.MAX SAFE INTEGER.

35

5.0.6 typeof

Difference between numeric types:

Equality operators can be used between the two types

Math operators only work within their own type

Leading - works, but + doesn’t

36

5.0.7 string

The string value is defined using any of the available quote characters: double
quotes, single quotes, and back-tick quotes (Located on tilde key.) You can nest
double quotes inside single quotes, and the other way around.

Running typeof on a string value returns "string":

You can also use String constructor function to build an object of string type:

Note that the first typeof returns "object", because at this point the object is
instantiated (this is different from the primitive’s literal value which is still just a
"string" primitive). To get the value of the instantiated object use valueOf()

method and use typeof string.valueOf() to determine the object’s type.

37

5.0.8 Template Strings

Strings defined using the backtick quotes have special function.

You can use them to create Template Strings (also known as Template Literals)
to embed dynamic variable values inside the string:

The back-tick cannot be used to define an object-literal property name (You still
have to use either single or double quotes.)

JSON format requires double quotes around object’s property names (back-ticks
won’t do any good here either, without generating an error):

We’ll take a look at JSON in greater detail in a later chapter.

Creative Use Case

Template strings can be used to solve the problem of forming a message that has
proper language form, based on a dynamic number. One of the classic cases is
forming an alert message sentence.

38

Whenever there is only 1 alert, the trailing "s" in the word "alerts" must be
removed. But we don’t want to create a second string just to cover one case.

Instead, we can calculate it dynamically. We also need to decide which verb should
be used ("is" or "are") based on the number of alerts.

Here the ternary operator consisting of ? and : is used.

You can think of ternary operator as an inline if-statement. It doesn’t need {}
brackets because it doesn’t support multiple statements:

Question mark can be interpreted as "if-then" or as "if the previous statement

evaluates to true" and the colon : can be interpreted as "else".

39

5.0.9 Symbol

The Symbol primitive provides a way to define a completely unique key.

Symbol doesn’t have a constructor and cannot be initialized using new keyword:

Instead, just an assignment to Symbol will create a new symbol with a unique ID:

The ID, however, is not the used-defined string "sym", it is created internally.
This is demonstrated in the following example.

At first it might be surprising that the following statement evaluates to false:

Whenever you call Symbol(’sym’) a unique symbol is created. The comparison
is made between two logically distinct IDs and therefore evaluates to false.

Symbols can be used to define private object properties. This is not the same
as regular (public) object properties. However, both public and private properties
created with symbols can live on the same object:

40

Here we created an object obj, using object literal syntax, and assigned one of
its properties property to a string, while second property was defined using the
[sym] symbol created on the first line. [sym] was assigned value of 1. Second
symbol property [bol] was added in the same way and assigned value of 2.

Third object symbol property [one] was added directly to the object via obj[one].

Printing the object shows both private and public properties:

Private (symbol-based) properties are hidden from Object.entries, Object.keys
and other iterators (for example for...in loop):

In addition symbol properties are also hidden from JSON.stringify method:

Why would we want to hide symbol-based properties from JSON stringify?

Actually it makes sense. What if our object needs to have private properties that
are only relevant to how that object works, and not what data it represents? These
private properties can be used for miscellaneous counters or temporary storage.

The idea behind private methods or properties is to keep them hidden from the
outside world. They are only needed for internal implementation. Private imple-
mentation is rarely important when it comes to marshalling objects.

41

But symbols can be exposed via Object.getOwnPropertySymbols method:

Note that you probably shouldn’t use Object.getOwnPropertySymbols to ex-
pose properties that are intended to be private. Debugging should be the only use
case for this function.

You can use symbols to separate your private and public properties. This is
like separating ”goats from the sheep” because even though they provide simi-
lar functionality, symbols will not be taken into account when used in iterators or
console.log function.

Symbols can be used whenever you need unique IDs. Hence, they can also be used
to create constants in enumerable lists of IDs:

Figure 5.1: Enumerating seasons.

Global Symbol Registry

As we saw earlier Symbol("string") === Symbol("string") is false because
two completely unique symbols are created.

But there is a way to create string keys that can overwrite symbols created using
the same name. There is a global registry for symbols, that can be accessed using
methods Symbol.for and Symbol.keyFor.

42

The private symbolic object property obj[sym] outputs the value of 25 (which
was originally assigned to obj[bol]) when it was defined, because both variables
sym and bol are tied to the same key "age" in global symbol registry.

In other words the definitions share the same key.

43

Constructors And Instances

There is a distinction between constructors and instances. The constructor
function is the definition of a custom object type. The instance is the object that
was instantiated from that constructor function using the new operator.

Let’s create a custom Pancake constructor, containing one object property number
and one method bake() which will increase pancake number by 1 when called:

Note that properties and methods are attached to the object via this keyword

The constructor is only a design of the object type. In order to start using it, we
have to instantiate it. When we do that, an instance of the object is created in
computer memory:

Let’s bake 3 pancakes by using bake() method which increments pancake counter:

3 pancakes successfully baked! Let’s take a look at pancake.number now:

44

You can look up the constructor function’s type. The constructor function Pancake

is an object of type Function. This is true of all custom objects. It makes sense
because the function itself is the constructor:

But, if you output constructor via the instantiated object, it will show you the
entire function body in string format:

You can actually create a brand new function by supplying the body in string
format to Function constructor:

This tells us that Function is the constructor for creating JavaScript functions.

But when we created our own Pancake function, Pancake became the constructor
of our custom class that we could also initialize using the new keyword.

45

5.0.10 Executing Methods On Primitive Types

Parenthesis And Object Property Access

The parenthesis operator gives you control over which statement should evaluate
first. That’s its primary purpose.

For example statement 5 * 10 + 2 is not the same as 5 * (10 + 2).

But sometimes it is used to access a member method or property. Which is
demonstrated in the next source code listing.

You can execute methods directly on the literal values of primitive types. Which
automatically converts them to objects, so that the method can be executed.

In some cases – like with the primitives of type "number" – we must first wrap
the literal value in parenthesis, or you’ll freeze your program.

A literal is just a literal value. By accessing its properties, it turns into a reference
to the object instance so you can execute object methods on that value.

Chaining Methods

Because in JavaScript functions can return this keyword, or any other value,
including functions, it’s possible to chain multiple methods using the dot operator.

"hello".toUpperCase().substr(1, 4); // "ELLO"

46

Chapter 6

Type Coercion Madness

When learning JavaScript from scratch you may be puzzled by some decisions
made by the language when it comes to evaluating statements.

For example, what will happen if we sporadically add up different types of values
and stitch them together using the + operator?

A string? This might seem confusing. After all, not a single value in this statement
is a string! So how did that happen?

Answer: When + operator encounters objects of incompatible type, it will attempt
to coerce those objects to their values in string format. In this case, leaving us
with a new statement: "null[object Object]" + true + [] + [5].

Furthermore, when + operator encounters a string at least on one side of the
operator, it will try to coerce the other side to string and perform string addition.

Calling .toString on true results in "true". Calling .toString on empty array
brackets [] when the other side of operator is also a string evaluates it to "" which
is why it appears missing from the result. And finally adding [5] to a string calls
[5].toString which results in "5".

47

6.0.1 Examples of Type Coercion

Here are some classic examples of type coercion.

JavaScript will try to come up with best value available if you supply meaningless
combinations of types to some of its operators.

After all, what would it mean to ”add” an object literal {} to an array []? Exactly
– it doesn’t make any sense. But by evaluating to object [] at least we don’t
break the code in that one little odd case where it may happen.

This safety mechanism will prevent the program from breaking. In reality, however,
these types of cases will almost never happen. We can treat majority of these cases
as examples – not something you should be actually trying to do in code.

48

Type Coercion In Constructors

Coercion also occurs when we provide an initialization value to a type constructor:

In the last two cases we supplied an array literal {} and an object literal [] to
Boolean constructor. What does this mean? Not much, but the point is that at
least it evaluates to true in this odd case.

This is just a safety net to prevent bugs.

Meaningless values still evaluate to either true or false, because these are the
only values available for boolean types.

Other built-in data type constructors behave in the same way. JavaScript will try
to coerce to an ideal value specific to that type.

49

Type Coercion

Coercion is the process of converting a value from one type into another. For
example, number to string, object to string, string to number (if the entire string
consists of numeric characters) and so on...

But when values are used together with different operators not all cases are
straightforward to the untrained eye.

To someone new to the language, the following logic might seem obscure:

Let’s say that it is false because two instances of [] are not the same, because
JavaScript == operator tests objects by reference and not by value.

But this statement evaluates to true because variable a points to the same instance
of the array literal. They refer to the same location in memory.

But what about cases like this? Even though you would never write code like this
in production environment, it calls for understanding of type coercion:

JavaScript will often coerce different types of values to either strings or numbers.
The Boolean type is no exception:

The above statement is the same as 1 + 0. And here’s the absolute classic:

These types of cases might appear bizarre at first, but as your knowledge of types
and operators deepens it will start to make a lot more sense.

50

Let’s start simple. The unary plus and minus operators force the value to a number.
If the value is not a number, NaN is generated:

Here unary minus (-) struggles to convert the string "text" to a number. What
does -"text" mean anyway? So it returns NaN because ”text” is not a number.

Here is the same logic demonstrated using the Number type function:

But when unary minus (-) is applied to a number, it produces expected value:

This rule is specific to the unary operator.

Number And String Arithmetics

Naturally the arithmetic + operator requires two values.

If both values are integers, arithmetic operation is performed. If one of them is
a string then coercion happens and string addition is invoked.

If the type of the two values provided to the arithmetic + operator is different, this
conflict must be resolved. JavaScript will use type coercion to change one of
the values before evaluating the entire statement to a more meaningful result.

51

What will happen if left value is a string and right value is a number?

Here + is treated as a string addition operator. The right value is converted to
"1" via String(1) and then the statement is evaluated as follows:

In JavaScript there are actually three + operators: unary, arithmetic and string.

Here JavaScript treats + not as the unary addition operator, but as the arithmetic
addition operator instead. But... when it sees that one of the values is a string, it
invokes the string addition operator. It makes no difference whether the string is
on the left or right side. The statement still evaluates to a string:

Operators follow specific associativity rules. Like + and most other operators, the
arithmetic addition operator (+) is evaluated from left to right:

But the assignment operator is evaluated in right to left order:

Note that in example above, while N is assigned value of 2, the statement itself
evaluates to undefined.

52

6.0.2 Adding Multiple Values

Often you will encounter statements tied together by multiple operators. What
should the following statement evaluate to?

First, all of the purely numeric values will be combined, ending up with the sum
of 5 on the left hand side and "" on the right hand side:

But this is still not enough to produce the final result. Adding a numeric value to a
string value will coerce the numeric value to a string and then add them together:

Finally we arrive at "5" in string format.

When adding numbers and strings, numeric values always take precedence. This
seems to be a trend in JavaScript. In the next example we we will compare numbers
to strings using the equality operator. JavaScript chooses to convert strings to
numbers first, instead of numbers to strings.

6.0.3 Operator Precedence

Some operators take precedence over others. What this means is that multiplica-
tion will be evaluated before addition.

Let’s take this statement for example:

53

Several things will happen here.

The string "" will coerce to 0 and 2 * 0 will evaluate to 0.

After multiplication, the numbers 1 + 1 + 1 will be added up to produce 3.

Finally: 3 + 0 will evaluate to 3.

6.0.4 String To Number Comparison

When it comes to equality operator == numeric strings are evaluated to numbers
in the same way the Number(string) function evaluates to numbers (or NaN).

According to EcmaScript specification, coercion between a string and a numeric
value on both sides of the == operator can be visualized as follows.

Comparing Numeric String To Number

54

Comparing Non-Numeric String To Number

If the string does not contain a numeric value, it will evaluate to NaN and therefore
further evaluating to false:

Other Comparisons

Other comparisons between different types (boolean to string, boolean to num-
ber, etc) follow similar rules. As you continue writing JavaScript code, you will
eventually develop intuition for them and it will become second nature.

The operator precedence and associativity table on the next page might help you
when things get tough.

55

6.0.5 Operator Precedence & Associativity Table

There are roughly 20 operator precedence levels. Parenthesis () overrides the
natural order. Red values are first in associativity order: for example, subtraction
operator subtracts blue from red. Assignment operators follow right to left order.

56

Associativity flows in either left-to-right or right-to-left direction: it determines
the order of the operation, usually for operators that require more than one value.

57

6.0.6 L-value and R-value

In many computer languages values on the left and right side of the operator are
referred to as L-value and R-value. In EcmaScript spec they are often referred
to as x and y values.

Assignment Operator

The assignment operator takes the R-value and transfers it over to L-value, which
is usually a variable identifier name.

Arithmetic Addition Operator

But the arithmetic addition operator takes the L-value and adds R-value to it:

Following this logic, it is possible to use the precedence table from the previous
page to figure out the order in which complex statements will be evaluated.

58

6.0.7 null vs undefined

The null primitive is not an object (although some may believe it is,) – so it
doesn’t have a built in constructor, like some of the other types. Luckily, we can
(and should) use its literal value: null.

Think of null as a unique type for explicitly assigning a ”nothing” or ”empty”
value to a variable. This way it doesn’t end up undefined.

If you don’t assign a variable to null, its value will be undefined by default:

To same effect, you can also explicitly assign variable to undefined:

But that’s something we should avoid. If the value is unknown at the time of
variable definition it is always best to use null instead of undefined.

The null keyword is used to assign a temporary default value to a variable before
it’s populated with actual object data at a later time in your program.

Initialize or Update

In a real-case scenario the null value can help us determine whether the data needs
to be initialized for the first time, or existing data merely needs to be updated.

We’ll take a look at a practical example in the next source code listing.

59

Let’s take a look at this scenario:

Here we assigned null to bike. Later at some point in code, the variable was
instantiated with a real object. At no point in our program bike was undefined,
even before it was initialized for the first time.

Inside the object itself, the this.features property was also assigned to null.
Maybe at a later time, we can download feature list from a database. Until then,
we can be sure that feature object was not yet populated.

This gives us a distinction between two classic cases: downloading data for the first
time (if this.features == null) or updating existing data (that has already
been downloaded at some point in the past.)

60

Chapter 7

Scope

61

7.0.1 Scope

Scope is simply the area enclosed by {} brackets. But be careful not to confuse it
with the identical empty object-literal syntax.

There are 3 unique scope types:

The global scope, block scope and function scope. Each expects different things
and has unique rules when it comes to variable definitions.

Event callback functions follow the same rules as function scope, they are just
used in a slightly different context. Loops can also have their own block-scope.

7.1 Variable Definitions

Case-Sensitivity

Variables are case-sensitive. This means a and A are two different variables:

Definitions

Variables can be defined using var, let or const keywords.

Of course, if you tried to refer to a variable that wasn’t defined anywhere, you
would generate a ReferenceError error ”variable name is not defined”:

Let’s use this setup to explore variable definitions using var keyword and hoisting.

62

Prior to let and const the traditional model allowed only var definitions:

Here apple is defined in global scope. But it can also be accessed from an inner
block-scope. Anything (even a function definition) defined in global scope becomes
available anywhere in your program. The value propagates into all inner scopes.

When a variable is defined in global scope using var keyword, it also automatically
becomes available as a property on window object.

Hoisting

If apple was defined using var keyword inside a block-scope, it would be hoisted
back to global scope! Hoisting simply means ”raised” or ”placed on top of”.

Hoisting is limited to variables defined using var keyword and function name de-
fined using function keyword.

Variables defined using let and const are not hoisted and their use remains limited
only to the scope in which they were defined.

As an exception, variables defined var keyword inside function-level scope are not
hoisted. Commonly, when we talk about hoisting block-scope is implied.

We will talk more about hoisting in just a moment!

63

Likewise, variables defined in global scope will propagate to pretty much every
other scope defined in global context, including block-level scope, for-loop scope,
function-level scope, and event callback functions created using setTimeout,
setInterval or addEventListener functions.

But what happens if we define a variable inside a block scope?

64

Variable apple is hoisted to global scope. But the value of the hoisted variable is
now undefined – not 1. Only its name definition was hoisted.

Hoisting is like a safety feature. You should not rely on it when writing code. You
may not retain the value of a hoisted variable in global scope, but you will still
save your program from generating an error and halting execution flow.

Thankfully, hoisting in JavaScript is automatic. When writing your program more
than half of the time, you won’t even need to think about it.

Function Name Hoisting

Hoisting also applies to function names. But variable hoisting always takes prece-
dence. We’ll see how that works in this section.

You can call a function in your code, as long as it is defined at some point later:

Note that the function was defined after it was called. This is legal in JavaScript.
Just make sure you understand that it happened because of function name hoisting:

It goes without saying if the function was already defined prior to being called,
there’d be no hoisting but everything would still work as planned. Statements inside
a function’s body are executed when the function is called by its name. Nameless
functions can still be assigned as values themselves. (See next example.)

65

It is possible to assign an anonymous function expression to a variable name.

It’s important to note, however, that anonymous functions that were assigned to
variable names are not hoisted unlike named functions.

This valid JavaScript code will not produce a function redefinition error. The
function will be simply overwritten by second definition.

Even though fun() was a function, when we created a new variable fun and
assigned another function to it, we rewired the name of the original function.

Having said this, what do you think will happen if we call fun() at this point?

Which function body will be executed?

You might think that the following code will produce a redefinition error:

However, this is still perfectly valid code – no error is generated. Whenever you
have two function defined using function keyword and they happen to share the
same name, the function that was defined last will take precedence.

66

In this case if you call fun(); the console will output the second message:

This actually makes sense.

In following scenario variable name will take precedence over function definitions
even if it was defined prior to the second function definition with the same name:

And now let’s call fun() to see what happens in this case:

But this time the output is:

You can see the order in which JavaScript hoists variables and functions. Functions
are hoisted first. Then variables.

Defining Variables Inside Function Scope

At this point you might want to know that variables defined inside a function will
be limited only to the scope of that function. Trying to access them outside of
the function will result in a reference error:

67

Simple scope accessibility rules:

Figure 7.1: Here var is defined in Global Scope, but its value propagates into the
block scope as well. What actually happens is, when block scope 1 cannot find
var definition in within its own brackets, it looks for it in the parent scope. If it
finds it there, it inherits its value.

Figure 7.2: Defining variables inside function scope is basically one way street
ordeal. Nothing can leave the confines of a function into its parent scope.

Functions enable closure pattern, because their variables are concealed from global
scope, but can still be accessed from other function scopes within them:

Figure 7.3: Nothing can get out of function scope into its outer scope. This
enables the closure pattern. We’ll take a look at it in just a moment!

68

The idea is to protect variables from the global scope but still be able to call the
function from it. We’ll take a look at this in greater detail in just a moment.

69

7.1.1 Variable Types

JavaScript is a dynamically-typed language.

The type of the variable (defined using var or let keyword) can be assigned and
changed at any time during the run-time of your application, after it was already
compiled by browser’s JavaScript engine.

The keywords var, let and const do not determine the variable’s type. Instead,
they determine how the variable can be used: can it be used outside of the scope
in which defined? Can it be re-assigned to another value during run-time? For
example, var and let can, but const can’t.

var

The var keyword is still with us from original specification. You should probably
start using let and const instead. For the most part it is still available but only
to support legacy code.

let

let defines a variable but limits its use to the scope in which it was defined.

const

const is the same as let but you can’t re-assign it to a new value once defined.

7.1.2 Scope Visibility Differences

No Difference In Global Scope

When variables are defined in global scope there is no differences between var, let
and const in terms of scope visibility.

70

They all propagate into inner block-level, function-level and event callback scopes:

Keywords let and const limit variable to the scope in which they were defined:

Variables defined using let and const are not hoisted. Only var is.

71

In Function Scope

However, when it comes to functions, all variable types, including var remain
limited to their scope:

You cannot access variables outside of the function scope in which they were
defined regardless of which keyword was used.

Closures

A function closure is a function trapped inside another function:

Calling add() increments counter. This is not possible using other scope patterns.

72

In the previous diagram, add() returns an anonymous function which increments
the counter variable that was defined in an outer scope.

Let’s try to use that pattern to create our own closure:

The plus() function is defined by an anonymous function that executes itself.

Why Are We Doing This?

Inside the scope of plus, another anonymous function is created – it increments a
private variable counter and sends the result back into global scope as a function’s
return value.

Take away: Global Scope cannot directly access nor modify the counter variable
at any time. Only the code inside the closure allows its inner function to modify
the variable, still, without the variable leaking into Global Scope. . .

The whole point is that Global Scope does not need to know or understand how
the code inside plus() works. It only cares about receiving the result of plus()
operation so it can pass it to other functions, etc.

So why did we even bother explaining them? Beside that closures are one of the
top-asked questions on JavaScript interviews?

Closures are similar to the idea of encapsulation – one of the key principles of
Object Oriented Programming, where you hide the inner workings of a function or
a method from the environment from which it was called.

This idea of making some variables private is key to understanding many other
programming concepts.

73

If you think about it, this is exactly why let was added to JavaScript. It provides
automatic privacy for variables defined in block-level scope. Variable privacy is a
fundamental feature of many programming languages in general.

In Block-level Local Scope

The let and const keywords conceal variable visibility to scope in which they were
defined and its inner scopes.

Scope visibility differences surface when you start defining variables inside local
block-level scope or function-level scope.

74

In Classes

The class scope is simply a placeholder. Trying to define variables directly in class
scope will produce an error:

Here are the proper places for defining local variables and properties. Note, in
class methods, let (or var or const) only create a local variable to that scope.
Therefore, it cannot be accessed outside of the method in which it was defined.

In classes variables are defined inside its constructor function or its methods:

75

7.1.3 const

The const keyword is distinct from let and var.

It requires assignment on definition:

Figure 7.4: const requires initial value assignment.

This makes sense because value of const cannot be reassigned.

It’s still possible to change values of a more complex data structure such as Array
or objects, even if variable was defined using const. Let’s take a look!

7.1.4 const and Arrays

Changing a value in the const array is still allowed:

You just can’t assign any new objects to the original variable name again.

7.1.5 const and Object Literals

Similar to arrays, when it comes to object literals, const only makes the definition
constant. But it doesn’t mean you can’t change values of the properties assigned
to a variable that was defined with const:

76

Conclusion

In case of a more complex data structure (object or array) you can think of const
as something that does not allow you to reassign it to a new object again. The
variable is locked to the original object, but you can still change the value of its
properties (or indexes, in case of an array.)

If the value of a variable was defined with const and a single primitive (string,
number, boolean,) such as speed of light, PI, etc, it cannot be changed.

7.1.6 Dos and Dont’s

Do not use var unless for some reason you want to hoist the variable name.
(These cases are rare and usually don’t comply with good software design.)

Do use let and const instead of var, wherever possible. Variable hoisting (vari-
ables defined using var) can be the cause of unpredictable bugs, because only the
variable name is hoisted, the value becomes undefined.

Do use const to define constants such as PI, speed of light, tax rate, etc.
– values that you know shouldn’t change during the lifetime of your application.

77

78

Chapter 8

Operators

8.0.1 Arithmetic

The arithmetic operators are pretty basic. They do exactly what you expect.

The modulus operator returns the number of times one number fits into the other.
Here, 4 fits into 10 only 2 times – it is also often used to determine the remainder.

You can create statements without assigning the value to a variable name. It is
possible to type them directly into your browser’s developer console for practice:

79

Figure 8.1: Typing JavaScript statements directly into Chrome console.

That works in Chrome console. But in your source code, evaluating simple state-
ments is meaningless:

More often, you will perform operations directly on variable names:

80

8.0.2 Assignment

Assignment operators assign a value to a variable. There are several assignment
operators that can also combine assignment with one of the arithmetic operations.

8.0.3 String

Strings can be assigned to variable names or each other using the + operator which
we earlier saw used as arithmetic addition. But when one or both of the values on
either side of + operator are strings, it is treated as a string addition operator.

In this context the += operator can be thought of as string concatenation operator.

81

8.0.4 Comparison

Figure 8.2: Triple equality operator checks for value and type.

8.0.5 Logical

Logical operators are used to determine logic between the values of expressions or
variables.

82

8.0.6 Bitwise

In binary number system decimal numbers have an equivalent represented by a
series of 0’s and 1’s. For example 5 is 0101 and 1 is 0001. Bitwise operators work
on those bits, rather than number’s decimal values.

We won’t go into great detail about how they work, but you can easily look them
up online. They have unique properties: for example: the << operator is the
same as multiplying a whole number by 2 and >> operator is the same as dividing
a whole number by 2. They are sometimes used as performance optimizations
because they are faster than * and / operators in terms of processor cycles.

83

8.0.7 typeof

The typeof operator is used to check the type of a value. It will often evaluate
to either primitive type, object or function. The value produced by the typeof
operator is always string format:

Figure 8.3: NaN (Not a Number) evaluates to ’number’. This is just one of many
JavaScript quirks. However, they are not bugs and usually start to make more
sense as your knowledge of JavaScript deepens.

NaN lives natively on Number.NaN – it is considered to be a primitive value.

NaN is the symbol usually produced in the context of a numeric operation. One
such example is trying to instantiate a number object by passing a string value to
its constructor: new Number(”str”) in which case NaN would be returned.

84

8.0.8 Ternary (?:)

The ternary operator has the form of: statement?statement:statement;

Statements can be expressions or a single value:

The ternary operator is like an inline if-statement. It does not support {} brackets
or multiple statements.

8.0.9 delete

The delete keyword can be used to delete an object property:

You cannot use delete to remove stand-alone variables. Even though, if you try
to do that, no error will be generated (unless you are in strict mode.)

8.0.10 in

The in operator can be used to check if a property name exists in an object:

85

The in operator, when used together with arrays, will check if an index exists.
Note, it is ignorant of actual value (in either arrays or objects.)

You can check for properties on built-in data types. The length property is native
to all arrays:

The ”length” property does not exist natively on an object unless it’s added ex-
plicitly:

Check for presence of constructor or prototype property on an object constructor
function:

86

Chapter 9

...rest and ...spread

9.0.1 Rest Properties

The ...rest syntax can help you refer to a larger number of items by extracting
them from a single function parameter name. The single ...rest parameter is
assumed to contain one or more arguments passed to the function:

Console output (if function was passed 3 arguments):

Figure 9.1: Using ...rest properties to break down a larger number of arguments
and passing them to higher-order function Array.map()

All joking aside, how can ...rest parameters simplify our code?

87

We can further shorten code by moving console output to a separate print function:

Call the f() function with an arbitrary number of arguments:

The function takes rest parameters: you can specify as many as you need.

Console output:

After arrow functions were introduced in EcmaScript 6, to further shorten code
some started to name their variables using a single character:

We just used multiple language features: an arrow function, ...rest, and .map()

to abstract our code to something that looks like a math equation without sacri-
ficing original functionality. It definitely looks cleaner than a for-loop!

This might make your code even shorter, but it’s probably harder to understand.

Remember, if you are working on a team, another person might be reading your
code. Sometimes that person will be you in the future.

88

9.0.2 Spread Properties

You can think of spread as an opposite of rest.

It can help you extract parts from an object.

9.0.3 ...rest and ...spread

It’s tempting to call ...rest or ...spread syntax operators. And you will often hear
people refer to them as such. But in fact it is only syntax. An operator is often
thought of as something that modifies a value. Rest and spread assign values.

If we box them into the category of operators, perhaps we could say they would be
similar to the equality operator =. Rest and spread simply abstract it for working
with multiple assignments.

The rest syntax is called rest parameters, in the context of using it as a parameter
name in a function definition, where it simply means: ”the rest of arguments”.
Sometimes it is referred to as rest elements, because it assumes multiple values.

Both rest and spread syntax takes on the form of ...name. So what’s the
difference?

...spread operator – expand iterables into one or more arguments.

...rest parameter – collect all remaining parameters (”the rest of”) into an array.

...rest

Let’s say we have a simple sum() function:

89

This limits us to two arguments.

The ...rest parameters can gather an unknown number of arguments passed to
the function and store them in an array (named args in this example):

It is similar to the built-in arguments array-like object. But there is a difference.
As the name suggests, rest can capture ”the rest of” parameters.

Keep in mind, ...rest must be either the only arguments token, or the last one on
the list. It cannot be the first argument of many:

Figure 9.2: ...rest parameters cannot appear as the leading parameter name when
followed by more parameters. You can think of it as ”the rest of” arguments when
used in this context.

Figure 9.3: Likeiwise ...rest cannot appear in the middle of an argument list. In
context of multiple function parameters, it is always the last one on the list.

If you don’t follow this rule, the following error will be generated in console:

Figure 9.4: Correct placement of ...rest parameters.

90

In this case the three dots in ...[1,2,3] is actually ...spread. You can see from
this example that ...spread is like a reverse of ...rest: it unpacks values from an
array (or an object, as we will see later.)

Contrary to ...rest, ...spread is allowed to be used anywhere on a list.

But ...rest and ...spread can sometimes overlap:

Here, first ...spread forms a complete list of arguments: 1, 2, 3, 4, 5 and
that’s what’s passed into the print function.

Inside the function, a equals 1, and [2, 3, 4, 5] is ”the rest of” arguments.

Here’s another example:

Let’s try it out:

91

Creating a sum() function with ...rest arguments

Our first sum function using ...rest parameters might look like this:

But because ...args produces an array, which makes it an iterable, we can use a
reducer to perform the sum operation:

But ...rest parameters also work in arrow functions and we can further shorten
the function to following form:

Some people think while this format is shorter, it’s harder to read. But that’s the
trade off you get with functional programming style. People with background in
math find this format elegant. Traditional programmers might not.

92

Flattening arrays with ...spread

Luna would be a nice name for a female cat with silvery fur that resembles the
moon’s surface.

Using ...spread outside of arrays, objects or function parameters

You can’t use ...spread syntax to assign values to variables.

Are you disappointed? Don’t be. You will love Destructuring Assignment.

93

9.1 Destructuring Assignment

Destructuring assignment can be used to extract multiple items from arrays and
objects and assign them to variables:

The above code is the same as:

When var, let or const are not specified, var is assumed:

As expected let definitions are not available as a property on window object:

It is possible to destructure into ...rest array:

Destructuring is often used to extract object properties to a matching name:

94

The order doesn’t matter – as long as there is property grapes the value will be
assigned to the variable with the same name on the receiving end:

Extract from multiple values. Grab apples and oranges and count them:

Destructuring is not implicitly recursive, second-level objects are not scanned:

But it’s possible to extract directly from object’s inner properties:

95

If variable is not found in object, you will end up with undefined. For example, if
we attempt to destructure to property name that doesn’t exist in the object:

It is possible to destructure and rename at the same time:

Merging objects with ...spread

You can use ...spread syntax to easily merge two or more objects:

What are the contents of object c?

Console output:

96

The great thing is that it’s not just a shallow copy.

...spread copies nested properties too:

Console output:

Merging arrays with ...spread

The same can be done with arrays:

97

98

Chapter 10

Closure

99

Closure Introduction

There are many different ways to explain a closure. The explanations in this
chapter should not be taken for the holy grail of closures. But it is my hope that
interpretation presented in this book will be enough to deepen your understanding.

Feel free to play around with the examples shown here on codepen.io and see
how they work. Eventually it should sink in.

In C, and many other languages, when a function call exits, memory allocated for
that function is wiped out as part of automatic memory management on the stack.
But in JavaScript, variables and functions defined inside that function still remain
in memory, even after the function is called.

Retaining a link to variables or methods defined inside the function, after it has
already been executed, is part of how a closure works.

JavaScript is an ever-evolving language.

When closures came around, there were no classes or private variables in JavaScript.
It can be said that until EcmaScript 6, closures could be used to (roughly) simulate
something similar to what is known as object’s method privacy.

Closures are part of traditional programming style in JavaScript. They are a prime
candidate for interview questions. Having said this, JavaScript Grammar cannot
be complete without a discussion on closures.

What Is Closure?

A closure enables you to keep a reference to all local function variables, in the
state they were found after the function exited.

Closures are difficult to understand, knowing nothing about scope rules and how
execution context delegates control flow in JavaScript. But I think this task can
be simplified if we start simple and take a look at a few practical examples.

To understand closures, we need to – at the very least – understand the following
construct. Primarily it is enabled by the idea that in JavaScript you can define a
function inside another function. Technically, that’s what a closure is.

100

In the following example, global function sendMail defines an anonymous function
and assigns it to variable send. This variable is visible only from the scope of
sendEmail function, but not from global scope:

Figure 10.1: In JavaScript, inner functions have access to variables defined in the
scope of the function in which they are defined.

When we call sendEmail it will create and call send function. It is not possible
to call send() directly from global scope.

Console Output:

101

We can expose a reference to private methods (inner functions) by returning them
from the function. The following example is exactly the same as one above, except
here instead of calling the send method we return a refernce to it on line 004:

Figure 10.2: Instead of calling send(), let’s return it. This way a reference to this
private method can be created in global scope.

Now we can call send() by reference directly from global scope.

Even after sendEmail function was called, msg and send variables remained in
memory. In languages like C, they would be removed from the automatic memory
on the stack, and we wouldn’t be able to access them. But not in JavaScript.

Let’s take a look at another example. First we defined print, set, increase and
decrease variables as global placeholders.

In order to assign anonymous function names to global function variables, we need
to run manager() at least once.

102

Figure 10.3: The set(755) function resets the value of number to 755.

Console Output:

Explanation

After calling manager() for the first time. The function executed and all global
references were linked to their respective anonymous functions. This created our
first closure. Now, let’s try to use the global methods to see what happens.

We then called some methods: increase(), decrease() and set() to modify
the value of number variable defined inside manager function. At each step we
printed out the value using the print() method, to confirm it actually changed.

103

Beautiful Closure

It can be assumed that closures are used in Functional Programming for similar
reasons to why private methods are used in Object Oriented Programming. They
provide a method API to an object in the form of a function.

What if we could advance this idea and create a closure that looked beautiful and
returned several methods rather than just one?

The del method will completely remove inc property from the object and readd will
re-add the property back. For simplicity of the explanation there is no safeguarding
against errors. But naturally, if the inc property was deleted, and an attempt to
call any of the methods was detected, a reference error would be generated.

104

Initialize closure:

Variable f now points to an array of exposed methods. We can bring them into
global scope by assigning them to unique function names:

We can now call them to modify the hidden inc property:

Finally we can delete the property itself using del method:

Calling other functions at this point would produce a reference error, so let’s re-add
the inc property back to the object:

105

Reset the inc property to 0 and increment it by 1:

Closing Words

Whenever a function is declared inside another function, a closure is created.

When a function containing another function is called, a new execution context
is created, holding a fresh copy of all local variables. You can create a reference
to them in global scope, by linking to variable names defined in global scope, or
returning the closure from the outer function using return keyword.

A closure enables you to keep a reference to all local function variables, in the
state they were found after the function exited.

Note: new Function() constructor does not create a closure, because objects
created with new keyword also creates a stand-alone context.

106

10.0.1 Arity

Arity is the number of arguments a function takes.

You can access function’s arity via Function.length property:

10.0.2 Currying

In JavaScript functions are expressions. This also means a function can return
another function. In the previous section we looked at the closure pattern. Currying
is a pattern that immediately evaluates and returns another function expression.

A curried function can be constructed by chaining closures by defining and imme-
diately returning all inner functions at the same time.

Here is an example of a curried function:

Function planets returns another anonymous function. So when it is assigned
to favoritePlanets with one argument ”Jupiter”, it can be called again with a
secondary argument.

107

Here is the result of the 3 curried functions from example above:

The inner function can be invoked immediately after the first call:

And the result is:

Currying is originally considered to be part of functional programming style.

It is not a surprise then, that this older currying syntax can be rewritten into this
far more elegant arrow function format:

And the outcome is:

108

Chapter 11

Loops

Loops are fundamental to working with lists. The primary purpose of a loop is
to iterate over one or a set of multiple statements. Iterating is commonplace in
software development – it means to repeat an action a multiple number of times.

Working with loops introduces the idea of iterators. Some built-in types are
iterable. Iterables that can be passed to a for...of loops instead of using traditional
for-loop. You can say that an iterable object abstracts away the index values of
a list and helps you focus on solving the problem.

Array is an iterable. Object is not (objects are enumerable).

An iterable type guarantees the order of items in the set. This is why arrays have
an index for each item. Enumerable types do not guarantee the order in which
properties will appear when iterated.

11.0.1 Types of loops in JavaScript

There are different ways to iterate in JavaScript. Starting from classic while and
for- loops to leaning more toward functional programming style iterators: using
array’s higher-order methods. Common iterators are for, for...of, for...in, while
and Array.forEach. Some Array methods are assumed to be iterators: .values,
.keys, .map, .every, .some, .filter, .reduce and a few others. They are called
higher-order functions, because they take another function as an argument.

109

Incrementing And Reducing

Loops are often used for walking through a large list of objects and updating their
properties. Loops can be used for filtering out objects and reducing the list to
something more meaningful.

They can also be used for reducing a set of values to a single value:

You can implement a reducer to the same effect:

Generating HTML Elements Dynamically

Create a number of HTML elements dynamically to populate the UI view:

This code will add 10 div elements to the document.

It is possible to use appendChild method to create nested elements.

110

Render lists

Loops are often used together with render lists. Rendering is simply the act of
displaying something on the screen. In software development, there are plenty of
times when you need to display a list of items.

Dynamically sorted tables

Building an entire table dynamically can help you sort values by column using an
Array.entries and Array.sort methods.

In some cases you will have to write your own sorting function, if your table columns
are stored in an object as properties and not array items. That however, may or
may not be a good idea, depending on the data set.

Note

You cannot easily make a decision about exactly how to deal with lists, until some
sort of data layout is defined. So, choosing which type of loop to use will be often
determined by other decisions made and the layout of your custom data structures.

111

11.1 for loops

For loop syntax comes in three syntactic flavors:

For loops require 3 statements separated by two semicolons, which can be any
legal JavaScript statement, a function call, or even an empty statement.

You’ll often use the following pattern in basic implementations: 1) initialize
counter 2) test condition and 3) increment or decrement counter.

11.1.1 0-index based counter

Initializing the for-loop counter with a 0-index based value is a good idea, because
most lists (like arrays) are 0-index based, where first item is located at array[0]
and not array[1]. This might take some time to get used to.

11.1.2 The Infinite for Loop

A for loop can be defined without any of the default statements. But by doing
this you will create an infinite for-loop that will freeze your program:

112

You probably don’t really want to do this, unless for some reason it becomes
necessary. A while loop should probably be used in this case.

11.1.3 Multiple Statements

Multiple statements can be separated by comma. In the following example the
inc() function is used to increment value of global variable counter. Note the
combination of the two statements: i++, inc():

This body-less for loop progresses the counter 10 times. The actual value is
incremented inside the inc() function. This is just an example of executing multiple
statements, we should definitely avoid using global variables in these types of cases.

Incrementing Numbers

At their basic, loops can be used to increment numbers.

for loops and let scope.

Bracket-less for-loop syntax is not good friends with the let keyword. The following
code will generate an error:

113

A let variable cannot be defined without scope brackets. All variables defined using
let keyword require their own local scope. This is fixed by:

Nested for Loops

Because a for loop is a JavaScript statement in itself it can be used as the iterable
statement of another for loop. This hierarchical for loop is often used for working
with 2-dimensional grids:

Console output (all combinations between x / y):

Loop’s Length

The condition statement will usually check if counter has reached a limit and if
so, the loop will terminate:

This simple loop will print ”loop.” to console 3 times:

114

You can add brackets if you need to execute multiple statements:

The console output will be same as previous example.

Skipping Steps

You can skip an iteration step by using continue keyword;

Output of this for-loop: (note 1 was skipped)

The continue keyword tells code flow to go to the next step without executing any
next statements in this for-loop’s scope during the current iteration step.

Breaking Early

You can break out of a for loop by using break keyword:

115

Note the condition statement was skipped here. The loop will break by an explicit
command from the statement itself.

In this case the for loop will print ”loop.” to the console only once. The break
keyword simply exits the loop whenever it’s encountered. But it can also be
conditional (see next example.)

Custom Breaking Condition

None of the 3 statements separated by ;; in a for loop are required. It’s perfectly
legal to move the conditional test into the for loop’s body, instead of testing for
it between the parenthesis.

This example skips the middle statement, where we would usually create a con-
ditional test for the counter, and replaces it by its own condition inside the loop
where it breaks out of the loop if i is greater than 1:

If not for the if statement inside the for loop, it would continue indefinitely because
there are not other conditions stopping it from running.

Console output:

The word ”loop.” is printed 3 times. The condition i is greater than 1 might
deceive us into thinking that the text will be printed 2 times at most. But it’s

116

printed 3 times! That’s because counting started with 0 and not 1, and at its
upper limit the condition evaluates to 2 and not 1.

Breaking To Label

In JavaScript, a statement can be labeled when a label name: is prepended to a
statement. Because a for loop is a statement you can label for loops.

Let’s try to increment value of c inside the inner loop. By choosing whether to
break the loop and jump to inner or mark label we change the pattern in which
the for loops will work:

1. This example produces 11 when breaking to mark: label.

2. This example produces 21 when breaking to inner: label.

The two examples are logically different based on which label the execution flow
of the inner for loop is transferred to.

117

Breaking from a labeled block scope

While we’re on the subject, you can use break keyword to break out of regular non
for-loop block scope as long as it’s labeled:

Console output:

Execution flow never reaches ”after”.

11.2 for...of Loop

Using indexed iterators, such as the for loop, can become a hassle when dealing
with arrays or object properties. Especially when their number is not known.

for...of loops to the rescue!

We’ll start with a slightly advanced example where we will use a for...of loop
together with a generator, and then discover some of the other, simpler use-cases.

11.2.1 for...of and Generators

Sometimes you might want to use a for loop with a generator – a special type of
function with star * character appended to the function* keyword.

When a generator function is called, the multiple yield statements inside it do not
execute at the same time, as you would normally expect. Only the first one does.

118

To execute yield statements 2 and 3, you have to call the generator function
again (two more times). Internally, the yield statement counter is incremented
automatically every time you call the generator function.

Generator executes a yield statement asynchronously, even though the code inside
the generator function has linear appearance. This is done on purpose - it makes
code more readable compared to alternatives (XMLHttpRequest, Ajax, etc).

The code above is equivalent to calling generator manually 3 times (When you
want to increment generator manually just make sure that you first assign it to
another variable.):

Here’s the console output in either case:

Generators are one-time use functions. You should not attempt to reuse a gener-
ator function more than once as if it were a regular function (after the last yield
statement has been executed.)

119

11.2.2 for...of and Strings

Strings are iterable.

You can walk each character of a string using a for...of loop:

Console:

11.2.3 for...of and Arrays

Let’s say we have an array:

We can iterate through it without having to create index variables. Once the end
of the array is reached the loop will end automatically:

Console:

120

11.2.4 for...of and Objects

It would be nice to have the ability to iterate over an object’s properties using
for...of loop, right?

But for...of loops work only with iterable values. An object is not an iterable. (It
has enumerable properties.) One solution is to convert the object to an iterable
first before using it in a for...of loop.

121

11.2.5 for...of loops and objects converted to iterables

As a remedy you can first convert an object to an iterable using some of the built-in
Object methods: .keys, .values or .entries:

This can also be achievable by using a for...in loop instead, without having to use
any of the Object conversion methods.

We’ll take a look at that in the following section.

122

11.3 for...in Loops

The for...of loops (in previous section) only accept iterables. Unless the object is
first converted to an iterable, a for...of loop won’t be of any help.

for...in loops work with enumerable object properties. It’s a much more elegant
solution for iterating through Object properties.

When you have an object at hand you should probably use a for...in loop.

A for...in loop will iterate only enumerable object properties. Not all object
properties are enumerable, even if they exist on the object. All non-enumerable
properties will be skipped by for...in iterator.

You won’t see constructor and prototype properties in an output from the
for...in loop. Although they exist on an object they are not considered to be
enumerable.

11.4 While Loops

A while loop will iterate for an indefinite number of times until the specified
condition (there is only one) evaluates to false. At which point your loop will stop
and execution flow will resume.

123

Once condition evaluates to false the while loop will break automatically:

Console output:

A secondary condition can be tested within the loop. This makes it possible to
break from the loop earlier if needed:

11.4.1 While and continue

The continue keyword can be used to skip steps:

124

Console output:

1

Just keep in mind this is just an example. In reality, this would be considered bad
code, because the if statement is still executed 1000 times. The console prints 1
only when c == 0. If you need an early exist, use break instead.

125

126

Chapter 12

Arrays

Many of the Array.* methods are iterators. Instead of passing your array into a
for or a while loop you should use built-in Array methods instead. Arrays usually
already have methods offering cleaner syntax for anything you would write yourself
to solve the same problem. So why re-invent the wheel?

Array methods are attached to Array.prototype property. This means you can
execute them directly from array object like array.forEach() or directly from
array’s literal value like: [1,2,3].forEach();

12.0.1 Array.prototype.sort()

Previous (pre-ES10) implementation of V8 used an unstable quick sort algorithm
for arrays containing more than 10 items.

A stable sorting algorithm is when two objects with equal keys appear in the same
order in the sorted output as they appear in the unsorted input. But this is no
longer the case. ES10 offers a stable array sort:

127

Fruit array definition:

Perform sort:

Console Output:

128

12.0.2 Array.forEach

The forEach method will execute a function for every item in the array.

Each iteration step receives 3 arguments value, index, object.

It’s similar to a for-loop but it looks cleaner:

Starting from ES6 it can be suggested to use arrow functions together with Array
methods. The code will be easier to read and maintain when building large scale
applications. Let’s take a look at how we can make syntax cleaner:

Because in JavaScript functions are also expressions, you can pass the function
directly into the forEach method:

But you might want to use an arrow function here: () => {}

The console output from both of the cases above:

129

If you can get away with one argument and return statement you can use this slim
form:

As long as you have only one single statement you can remove brackets.

12.0.3 Array.every

Return value: boolean

Not to be confused with ”execute for every item” logic of forEach. In many cases
method every will actually not run on every item in the array when at least one
item doesn’t evaluate to true based on specified condition.

The method every will return true if the value of every single item in the array
satisfies the condition specified in its function argument:

The result is true because none of the numbers in the array are greater than or
equal to 10. Let’s take at the same function with a different value set. If 10 or a
greater number was present in the array the result would be false:

Here one of the numbers is 256. Which can be translated to ”not every value
in the array is ¡ 10”. Hence, false is returned. It’s important to note that once
Array.every method encounters 256 the condition function will not execute on the
remaining items. Just a single failed test will cause false.

130

Array.every does not modify the original array. The value inside the function is a
copy, not a reference to the value in the original array:

12.0.4 Array.some

Return value: boolean

Similar to Array.every except it stops looping whenever it encounters a value that
evaluates to true (and not false like in Array.every) Let’s compare:

Here some returns true because it checks first value: 0 for ¡ 10 and immediately
returns true without having to check the rest of the values.

The every method returns false on the same data set. That’s because when it
reaches the second item whose value is 10, the ¡ 10 test fails.

Note: Try not to think of some as an ”opposite” of every. In some cases they
return the same result on the same data set.

12.0.5 Array.filter

Return value: new array consisting only of items that passed a condition.

The new filtered array contains all original items except 10. Because it did not pass

131

the ¡ 10 test. In a real-world scenario the condition can be much more complex
and involve larger objects sets.

12.0.6 Array.map

Return value: a copy of the original array with modified values (if any.)

Array.map is like Array.forEach but it returns a copy of the modified array. Note
that original array is still unchanged.

12.0.7 Array.reduce

Return value: accumulator

Reducers are similar to other methods. Yet they are unique because they have an
accumulator value. The accumulator value must be initialized. There are different
types of reducers. In this first example we’ll take at a simple case.

As values are iterated this accumulator adds all numbers into a single value:

Like any other Array method that works with iterables, a reducer has access to
the value it is currently iterating (currentValue).

This reducer added up all the numbers into the single accumulator value and
returned it: 1 + 2 + 4 = 7.

How to understand reducers in more complex, practical situations?

When developing software in the real world you won’t be using reducers to count
numbers. This can be done with a simple for loop. You will encounter plenty of
situations where a set of data should be ”reduced” only to the set of important
values based on some criteria.

132

Array.reduce or Array.filter?

There is a reason why Array object has a number of different methods that at
first sight appear to do the same things.

When it comes to Array methods, always try to to choose a proper tool for the
task. Don’t use reduce just because you want to use reduce – figure out if a
particular method was purposed to produces a more efficient logic.

It is written, somewhere, that reduce is the father of filter and map. Anything
you can do with filter and map can be done with reduce.

However, reduce provides a more elegant solution to adding up numbers than a
for-loop or other Array methods.

Reducers And Updating Object Properties In A Database

After an API action – update or delete an item, for example – you may want
to update the application view. But why update all objects everywhere, when you
can ”reduce” which object properties should be affected, without having to copy
entire lists of object – even the ones that weren’t affected by the API call?

12.0.8 Practical Reducer Ideas

Narrowing down on object properties

Let’s say your car listing management application has a button that updates the
price of a particular vehicle. The user sets a new price and clicks on the button.
An action is dispatched to update the vehicle in the database.

Then the callback function returns containing the object with all properties for
that vehicle ID (price, make, model, year). But, we only need to update the price.

A reducer can make sure to narrow down on (or ”hand pick”) only the vehicle
price property, not the entire set of properties on the object. The object is then
sent back to the database and application view is updated.

133

Counting weekends

Imagine a task where you had to implement a function that, given month would
return number of weekends, working days and holidays there are in that month. A
month could be represented by the number of days in it.

It’s important to keep the input values the same type as the return value of a
reducer. This is one of the main characteristics of a reducer: to reduce a set (not
necessarily by filtering, although it is a possibility.)

Function Purity

Reducers are often used in code written following Functional Programming style
principles. One of which is function purity. The following Dos and Dont’s
describe some of properties of a pure function.

12.0.9 Dos and Dont’s

Even though these are not absolute requirements, these ideas might be helpful for
avoiding anti-pattern code. Only use reduce() when the result has the same type
as the items and the reducer is associative:

Figure 12.1: Array of numbers is ”reduced” to a number - value of the same type.

Do use it for summing up some numbers.

Do use it for multiplying some numbers.

Do use it for updating state in React.

Do not use it for building new lists or objects from scratch.

Do not use it for just about anything else (use a loop).

Do not use it to mutate (change original values of) its arguments.

Do not use it perform side effects, like API calls and routing transitions.

134

Do not use it to call non-pure functions, e.g. Date.now() or Math.random().

135

12.0.10 Array.flat()

Flattening a multi-dimensional array:

12.0.11 Array.flatMap()

Becomes:

Now flatten the map:

Becomes:

136

12.0.12 String.prototype.matchAll()

Matching multiple patterns in a string is a common problem when writing software.
Use cases include extracting name and email addresses at the same time from an
email header, scanning for presence of unique patterns, etc.

In the past, to match multiple items we used String.match with a regular ex-
pression and /g (”global”) flag or RegExp.exec and/or RegExp.test with /g.

First, let’s take a look at how the older spec worked.

String.match with string argument only returns the first match:

The result is a single "l" (note: the match is stored in matches[0], not matches.)

Only "l" is returned from a search for "l" in the word "hello".

The same goes for using string.match with a regex argument. Let’s locate the "l"

character in the string "hello" using the regular expression /l/:

Adding /g to the mix

String.match with a regex and the /g flag does return multiple matches:

Great... we’ve got our multiple matches using < ES10. It worked all along. So
why bother with a completely new matchAll method? Well, before we can answer
this question in more detail, let’s take a look at capture groups. If nothing else,
you might learn something new about regular expressions.

137

Regular Expression Capture Groups

Capturing groups in regex is simply extracting a pattern from () parenthesis.

You can capture groups with /regex/.exec(string) and with string.match.

Regular capture group is created by wrapping a pattern in (pattern).

But to create groups property on resulting object it is: (?<name>pattern).

To create a group name: prepend ?<name> inside brackets. The resulting object
will have a new property groups.name attached (see code below.)

This is the string we will take as the specimen for our experiment:

Figure 12.2: String specimen to match.

Here’s a code example:

Figure 12.3: Note: match.groups.color & match.groups.bird are created
from adding ?<color> and ?<bird> to the () match in the regex string.

regex.exec method needs to be called multiple times to walk the entire set of
the search results. During each iteration when .exec is called, the next result is
revealed (exec doesn’t return all matches right away.) Hence, while loop.

138

Console Output:

But there is the quirk:

If you remove /g from this regex, you will create an infinite loop cycling on the
first result forever. This has been a huge pain in the past. Imagine receiving a
regex from some database where you are unsure of whether it has /g at the end
or not. You’d have to check for it first, which would require additional code.

And now, we have enough background to answer the question:

Good reasons to use .matchAll()

1. It can be more elegant when using with capture groups. A capture group is
simply the part of regular expression with () that extracts a pattern.

2. It returns an iterator instead of array. Iterators on their own are useful.

3. An iterator can be converted to an array using spread operator (...)

4. It avoids regular expressions with /g flag... useful when an unknown regular
expression is retrieved from database or outside source and used together with the
archaic RegEx object.

5. Regular expressions created using RegEx object cannot be chained using the
dot (.) operator.

6. Advanced: RegEx object changes internal .lastIndex property that tracks

139

last matching position. This can wreck havoc in complex cases.

How does .matchAll() work?

Let’s try to match all instances of letter e and l in the word hello. Because an
iterator is returned we can walk it with a for...of loop:

Note that .matchAll method does not require /g flag.

Capture Groups example with .matchAll()

.matchAll returns an iterator so we can walk it with for...of loop.

140

Console Output:

Perhaps aesthetically it is very similar to the original regex.exec while loop im-
plementation. But as stated earlier this is the better way for the reasons mentioned
above. And removing /g won’t cause an infinite loop.

12.0.13 Dos and Dont’s

Do use string.matchAll instead of regex.exec & string.match with /g flag.

141

12.0.14 Comparing Two Objects

It makes sense to compare two literal numeric values such as 1 === 1 or literal
boolean values true === false, but what does it mean to compare two objects?
Furthermore == and === operators won’t help because they compare by reference
and not by value: [] and [] may be equal by value but they are different arrays:

We’ll have to write our own function! One way of thinking about comparing
objects is comparing the number, type and value of all of their properties.

Following naming convention of strcmp: a function that compares strings in many
languages, we can write a custom function objcmp that compares two objects:

Figure 12.4: A shallow copy object property comparison algorithm.

142

The function objcmp takes two arguments: a and b, representing the two objects
we want to compare.

This is a non-recursive, shallow copy algorithm. In other words, we are only com-
paring first-class properties attached directly to the object. Properties attached to
properties are not compared. In many cases this is enough.

But there is another, much greater problem. In its current form the function
assumes that properties cannot point to either an array or object. Two common
data structures that are very likely to be part of an arbitrary object.

Even if we’re not doing a deep comparison, the function will fail if any of the
properties point to either an object or an array, regardless of whether their length
and actual values are the same:

Our algorithm failed on [1,2] === [1,2] comparison. So how do we deal with
this situation? First, we can write our own is array function. Because array is
the only object in JavaScript with length property and at least 3 higher-order
functions: filter, reduce and map, we can say that if these methods exist on an
object, then it must be an array, with roughly 99% certainty:

143

12.0.15 Writing arrcmp

Let’s write our own arrcmp function based on the assumption the array equality
means that each value at each corresponding index in both arrays match:

There is no built in function for comparing arrays in JavaScript. There is probably
a good reason for it. How data is mapped to an array largely depends on overall
design of the data in your application.

After all, what exactly does it mean for two arrays to be equal? The data layout
can be different from project to project. So is the nature of what you’re trying
to accomplish, by storing data in arrays. For this reason an array does not always
guarantee integrity between its values and indexes they are stored at.

Without a concrete project, we can only assume that it does.

144

12.0.16 Improving objcmp

Now that we have is array and arr cmp let’s add two special case comparisons to
the objcmp function: one for arrays using our new function, and one for objects
using recursion. This deepens our algorithm and makes it less prone to bugs.

We will call objcmp from itself (line 025) if one of the object properties checks
out to be an object literal itself:

Lines that were changed from previous version are highlighted. A test for whether

145

property points to an array or an object literal was added. If the property is neither,
primitive value is tested as usual.

12.0.17 Testing objcmp on a more complex object

Let’s try it out in action!

Here we have 3 objects M, N and O.

Objects M and N are the same, whereas O only differs in array value [5,7].

Our first attempt to run the older version of objcmp failed on the following case.

But now it works:

Another test, this time using a few different object literals:

146

Our object comparison function now works as expected. It’s not perfect but at
least it won’t get stuck in large majority of cases. In fact, it even checks object
properties recursively, which is a bit more of a deeper search than before.

Possible Improvements: You can further improve this function by checking for
arrays of objects, instead of just arrays of values.

As you can see, this is exactly why a native function for a deep search doesn’t exist.
It really depends on your data implementation. Who says your arrays will contain
objects or that any object property will ever point to another object? Without
this knowledge, it’s difficult to create a common-case algorithm without risking
creating an anti-pattern (when your code does more than it needs to.)

Chapter Review

Trying to solve one problem (compare two objects) led to discovery of another
problem we also needed to solve first (compare two arrays.) This is not something
we predicted at the time we thought of writing objcmp.

JavaScript already provides Array.isArray method – so why reinvent the wheel?

Taking initiative to solve any problem is what makes the distinction between a
hobbyist coder and a software developer. The skill of thinking for yourself to solve
problems, instead of using existing libraries, helps you train yourself for.

Writing your own code is always a good idea. If you can’t write an is array
function yourself, chances are you won’t have the practice and training to write
an important function later, one that doesn’t exist but is crucial to success of a
real-life project, facing much more complex problems.

This might cause you not only reputation among your peers, but the job itself.
Most interviews at software companies don’t test only for knowledge, they want
to see your problem-solving approach. Perhaps, it’s a good idea to develop it!

147

148

Chapter 13

Functions

13.1 Functions

In JavaScript there are two types of functions: the standard function that can be
defined using function keyword and an arrow function ()=>{} added later in ES6.

Regular functions can be called. But they can also act as object constructors,
when used together with new operator in order to create an instance of an object.
Note that since EcmaScript >= 6 you can use class keyword to the same effect.

Inside a function, the this keyword can point either to the context from which the
function was called. But it can also point to an instance of the created object, if
that function was used as an object constructor.

Functions have an array-like arguments object inside their scope, which holds the
length of parameters and values that were passed to the function, even if parameter
names were not present in function definition.

An arrow function can be called. But it cannot be used to instantiate objects.

Arrow functions are often used with functional programming style. Like regular
functions, they can be used to define object methods. They are also often used
as event callback functions. Inside the scope of an arrow function this keyword
points to whatever this equals to outside of its own scope.

Arrow functions do not have the array-like arguments inside their scope.

149

13.1.1 Function Anatomy

The function definition consists of the function keyword followed by its name
(shown as update, in the following example) parenthesis containing a list of pa-
rameter names (a,b,c) and the function body enclosed in brackets:

Figure 13.1: Function anatomy.

The return keyword is optional. But function will return anyway once all state-
ments in its body are done executing, even if return keyword is not specified.

The this keyword inside an ES5 style function points to the context from which the
function was executed. Very often it is the global window object. If the function
is used to instantiate an object using new keyword then this keyword will point
to object instance that was instantiated using function.

The arguments is an array-like object that contains 0-index list of arguments that
were passed into the function, even if parameter names were not specified in the
function’s definition.

150

13.1.2 Anonymous Functions

Nameless or anonymous functions can be defined by using the same syntax but
skipping the function name.

Anonymous functions are often used as event callbacks, where we usually don’t
need to know what the names are – we simply want to execute them at a specific
time after an event has finished doing its work:

Figure 13.2: Anonymous function used as a setTimeout event callback.

Figure 13.3: Anonymous function used to intercept a mouse click event.

13.1.3 Assigning Functions To Variables

Anonymous functions can be assigned to a variable, making them named functions
again. By doing this you can separate the function definition from its use in an
event-based method:

Figure 13.4: Assign an anonymous function to variable print.

151

Figure 13.5: Assign an anonymous function to variable clicked.

We can now call these functions by their name:

Figure 13.6: ”anonymous” functions that were assigned to a variable name become
named functions.

You can also pass them to the event functions just by their name:

Figure 13.7: Cleaner code.

This often makes your code look cleaner. Note that different event functions
generate their own arguments, regardless of whether your anonymous function
defines parameters to catch them – they will be passed into the function:

152

Function Parameters

Function parameters are optional. But in many cases you will find yourself defining
some. You can use default function parameters to pass things like primitives, arrays
and objects into a function. Anything that evaluates to a single value will do it:

You can pass the name of another function. This way you can call that function
at some point later inside another function.

Let’s pass some arguments into function’s parameters:

Note that we’re passing the function name Volleyball and the result: Volleyball()
(which will evaluate to string value ”Volleyball.”) into the last two parameters of
the function Fun(); to get the following console output:

153

That’s a useful variety of primitives and objects!

The last value is generated by calling function Volleyball, which was passed into
parameter func. This means we can simply call it by calling func() instead of
Volleyball(), since func is its name inside the function.

Checking For Types

JavaScript is a dynamically-typed language. The type of a variable is determined
by its value. The variable definition simply assumes the type. This sometimes can
be the cause of subtle bugs.

For example, even though JavaScript provides a number of different object types
to work with, it doesn’t really provide an automatic safeguard that makes sure the
arguments passed into the function were what you expect them to be.

What if in the previous example, we passed an array or an object into func

parameter? The function expects it to be a function. We wouldn’t be able to
call func() if func wasn’t a function.

Let’s narrow down on the problem:

154

But we cannot call an array. Hence, console output:

This is a problem if it happens in production code.

Safeguarding Function Parameters

The solution is to safeguard the value by checking its type. JavaScript has a
built-in directive typeof that we can use before calling the function:

The function Fun(array) was called. The function expects a function name as
an argument but an array was sent. The typeof test failed and nothing happened
but at least our program didn’t break.

You can do the same with other types if it becomes imperative that a particular
value must be in absolute compliance with a particular type.

155

13.2 Origin of this keyword

The this keyword was borrowed from C++. In its original design this keyword
was meant to point to an instance of an object in class definitions.

That’s it! There shouldn’t be much more to it.

But it seems like original designer of JavaScript language decided to use this
keyword to provide one extra feature: carrying a link to execution context, which
shouldn’t really be part of computer language feature design, but rather kept away
to its internal implementation:

Figure 13.8: This duality of this keyword often causes a headache that you may
need to take two Ibuprofens for.

You can’t avoid dealing with context in any programming language. But wiring
context into this keyword was a mistake and created duality and much confusion.

Later arrow functions were invented to deal with some of the side effects of this
odd-ball use-case for this keyword. And that is our next subject!

156

Chapter 14

Higher-order Functions

14.0.1 Theory

Higher-order functions may sound complicated but they are actually simpler than
their regular (first-order) functions that you’ve already been dealing with all along.

Higher-order functions, as the name suggests, is something that exists at a higher
level of thinking. That’s what abstraction is. If you want to become even better
at software development, abstraction is a very important concept to understand.

You can think of abstraction as the quality of dealing with ideas rather than gritty
details. Once you get a good grasp on it, abstraction will become your best friend.

Abstraction

When you are driving a car and you push the break pedal, you don’t think about
weight distribution, the brake caliper containing pistons that push the brake pads
against the disc, or how power assistance mode augments the pressure you are
placing on the pedal. You simply want the car to stop. That’s what you expect
to happen. You see? You’ve already been using abstract thinking – it’s natural.

How does this hold up in the context of writing software applications? In the
following section, we will write our own higher-order function map that will walk
through each item in an array, and apply a function to it. If our map function was
the car brake system from previous example, it would be the brake pedal. It will be
responsible for controlling the brake calipers and pistons – a mechanism designed
to take care of the low-level details by making them abstract. So when we call

157

map function, we don’t have to think of all the gritty details. We simply want
something to happen and have the expected result returned from the function.

That’s great, but before using the function we actually have to design its content
and determine how we want those gritty details to work.

JavaScript already supports several higher-order functions that do just that. But
before using them, we will write our own. If anything, this will help us deepen our
understanding not only of high-order functions but of abstraction in general.

Writing your first higher-order function

Not all problems can be solved with built-in JavaScript methods. Working on
custom software, you will be faced with situations where you would have to write
your own functions of this kind, or functions that require thinking in abstract terms
in order to produce the most efficient solution.

The first-order function that applies an action

The actual action happens not in map, but in the function passed to map as one
of its parameters. This means the map function doesn’t have one single purpose.
It is whatever the function passed into it does. And that can be anything.

We’ll create the map function and pass a first-order function into it, whose single
purpose will be to increment a numeric value by 1. Just like in the car brakes
example, the user of our map function should not be concerned about how the
internal for-loop iterates through all items. We just want to give it a task. In
order to do that, we will pass another function into the higher-order map function.

Important: What actually makes the function abstract is the fact that the higher-
order function itself does not need to know exactly what it’s doing. It is simply
a logical scaffold to perform an action on a set of values. Much like a for-loop.
In fact, a for-loop is at its core. But when the function is actually being used, it
is of no concern. You can think of this as abstracting the for-loop (it becomes
assumed.)

They are actually often used together with first-order functions. Try not to think
of a higher-order function as a specific feature. They can behave as a for-loop.
But they can also be used as a way to instantiate an event – in which case a
first-order function would be used together with it as a callback function. They
are not limited to a single purpose. They enable a few different logical patterns

158

that cannot be created using first-order functions alone.

For example Array.map iterates through a set of values and applies a modification.

The Array.reduce ”reduces” a set of values to a single value.

Event-based setTimeout is a higher-order function, and so is addEventListener.

14.0.2 Definition

A higher-order function is a function that either takes a function as one of its
parameters or returns a function (or both.)

14.0.3 Abstract

Here is one way of visually thinking about the pattern of a high-order function. It
exists as a higher level thinking.

Figure 14.1: Visualizing a higher-order function.

But this still doesn’t tell us much about how they’re used or what they can actually
do. Let’s take a look at few different examples.

159

14.0.4 Iterators

The Array.map method is one of the most common higher-order functions. It
takes a function to run on every item in the array. Then it returns a modified copy
of the original array:

Here is a rather abstract way of thinking about the problem: ”Add 1 to each item
in the array.” Simple logic which is defined in add one function.

The Array.map method does not expose its loop implementation. The idea is not
to make the iterator merely more efficient either (although, that would help) but
hide it completely. We are only concerned with supplying a first-order function to
the map method. Internally, it will run the function on each value in the array.

This is a very powerful technique that can apply to many problems. But the
greatest advantage of using a higher-order function is that it abstracts problem
solving. It helps us focus on the key: running the function on each individual item
in the array, while abstracting away the for-loop (or while loop).

Let’s create the function that will modify the values. The body of the function
depends on what type of modifications you’re looking to apply to each array item.

We will create a first-order function called add one, which simply adds 1 to the
value. This is just a helper function that will work together with a higher-order
function (first-order and higher-order functions are often used together.)

160

Figure 14.2: A first-order function add one.

For a function to qualify as a higher-order function it either needs to take a function
as one of its parameters, or return a function. As long as one of those conditions
is met we are creating a higher-order function.

The map function will take an array to work on. It will return a copy of that array
with each item modified by the add one function we have written earlier, which
will be passed as the second parameter.

Let’s write our own version of map which will be similar to what Array.map does:

Figure 14.3: Complete source code of a higher-order function map. It is assumed
that the array will contain only numeric values.

Line-by-line explanation of map() function

The function map takes two parameters: an arbitrary array of values and the
function which we want to apply to each item in the array.

First, copy array was created and assigned to an empty array literal: []. This array
will store a modified copy of the original array that was passed into the function.

161

Then a for-loop iterates through the array we received as first parameter. This
is the part we want to make abstract. When using the function we won’t even
have to think about the for-loop:

Inside the loop, let’s copy the value at current index in the original array to a
temporary variable original.

Now let’s pass the value in original variable to the first-order function that was
passed to this function:

The f function will do the magic (in our example, add 1 to the original value, but
it can be anything) and return the modified value. So let’s copy the modified value
into our copy array which is a placeholder for the entire modified array.

Finally, a copy of the modified array is returned:

Once all items have been copied and processed by add one function, they will be
stored in copy array which will then be used as the return value of the function.

Side note: The reduce method – which is also a higher-order function – uses
something known as an accumulator. The accumulator in Array.reduce serves
a similar purpose as the copy array in this example. In reduce, however, the
accumulator is not an array – it is a single value that cumulatively gathers together
all items from the array and combines them into a single return value. That’s why
reducers are a better solution when you need to combine values.

162

Calling our custom map function

To see how it all works, first, let’s define an initial set of values to work with:

Let’s try out our map function in action:

Here add one is the function from earlier in this chapter. It simply adds 1 to the
value that was passed to it and returns it.

The result? The original array [0,1,2] is now [1,2,3]. All items in the array
were incremented by 1.

We’ve just written our own map method that internally does exactly the same
thing as the built-in method Array.map. This operation is so common that it was
added as a native method on the Array object.

Calling Array.map function

Yes, we can do exactly the same thing using a built-in Array method map. It does
exactly (or relatively) the same thing:

Sounds easy. We could have used this method from the very start. But by writing
our own map method we now actually understand how it works internally.

This will help us understand many other higher-order functions that implement
iteration over a list of items, such as filter, every, reduce, etc. They all use
similar internal code, with just a few slight differences.

163

What happened to the for-loop?

As you can see Array.map implements a for-loop internally. This isn’t the issue of
providing a more efficient for-loop, but rather, hiding it from our sight completely.

All we have to do is supply a function to the Array.map method. By hiding the
iteration steps, we are left only with writing the actual function that compares,
adds or filters each value individually.

This helps you to focus on solving the problem, instead of writing and re-writing
a lot of repetitive code. But it also makes your code look cleaner.

14.0.5 Dos and Dont’s

Often beginners use one method instead of another to accomplish relatively the
same thing. While it ”still works,” this choice shouldn’t be taken lightly.

Do use a high-order method for solving the problems it was intended to solve.
Understanding the differences between map, filter, reduce matters. This isn’t
about just the syntax differences, but writing efficient code and avoiding anti-
patterns. Try to find a proper method for the given task.

Do not use filter if you can get away with using reduce to accomplish the same
action with more efficiency. Different high-order functions are designed to deal
with problems specific to their implementation.

164

Chapter 15

Arrow Functions

165

Arrow Functions

Arrow functions were introduced in ES6 and provide a slim syntax for creating
function expressions in JavaScript. Instead of defining the function using the
function keyword, arrow functions have following syntax

In many ways arrow functions behave in the same way as standard functions. You
can assign them to a variable name:

You call them by name:

And have values returned from them using return keyword:

Now we can call function fun 2 by its name:

The function returns a value of 1, just as expected.

return-less return

Arrow functions add one other unique feature. You can return values without
using return keyword.

166

Even after removing {} brackets and return keyword in the example below 1 is
still treated as a valid return value. This makes your code a lot more clean than
using the old and redundant ES5 function syntax:

And now you can simply call this function as usual:

Remember that in JavaScript functions are expressions. An expression is anything
that returns a single value. Similar to how a math equation returns a value.

Arrow functions help us expand on the idea by providing an even slimmer syntax
(by removing parenthesis and the need to explicitly specify return keyword:)

They turn functions into something that looks a lot like a math equation. (or a
math function.) That’s why they are often used in Functional Programming style.

If you have a background in math you will feel at home using them!

Arrow Functions As Events

Some believe using arrow functions is a more elegant solution for events:

Or an even slimmer syntax:

167

15.0.1 Arrow Function Anatomy

Arrow functions do not have array-like arguments object. They also cannot be
used as constructors. The this keyword points to the same value this points to in
the scope just outside of the arrow function.

Arrow functions are expressions – they do not have a named syntax, like regular
functions defined with function keyword. But just like regular functions, you can
assign them to variable names.

Figure 15.1: Arrow function anatomy.

168

Arguments

You can pass arguments to an arrow function via parameters.

Returning From An Arrow Function

Arrow functions are primarily designed as expressions, so you might want to spend
extra time on learning how they return values:

Takeaway: time arrow function is the only function that does not return a value
at all. Be careful not to use this syntax with higher-order functions.

169

Similarities Between ES-style Functions

There are some similarities between arrows and classic functions. Most of the time
you can use arrow functions as a replacement to standard ES5 functions without
a hitch!

Let’s try this example to get started with our discussion about arrow functions.
I defined two classic ES5 functions classic one and classic two, followed by
definition of arrow – an ES6-style arrow function:

I added console.log(this); statement to the scope of each function, simply
to see the outcome.

Let’s call all 3 functions in a row:

170

Console output:

When defined in global scope, it only seems like there is no difference between
classic and arrow functions, in terms of this binding.

No this binding

Arrow functions do not bind this keyword. They look it up from whatever this
equals in the outer scope, just like any other variable. Hence, you can say arrow
functions have a ”transparent” scope.

No arguments object

The arguments object does not exist in arrow function scope, you will get a
reference error if you try to access it:

Just as a reminder here, the arguments object does exist on classic ES5 functions:

171

No Constructor

ES5-style functions are object constructors. You can create and call a function
but you can also use same function as an object constructor – together with new

operator – to instantiate an object. The function itself becomes class definition.

For this reason you would often hear it said that in JavaScript all functions are
objects. After ES6 specification introduced arrow functions to the language this
statement is no longer true. Arrow functions cannot be used as object constructors.

Therefore, arrow functions cannot be used to instantiate objects. They work best
as event callbacks or function expressions in methods such as Array.filter,
Array.map, Array.reduce and so on... In other words, they are more proper in
context of Functional Programming style.

Thankfully, modern JavaScript is rarely written using ES5-style functions mas-
querading as object constructors. It’s probably a good idea to start defining your
classes using class keyword anyway, instead of using function constructors.

172

When classic and arrow functions are used as event callbacks

There is a difference between classic ES5 functions and arrows, when they are used
as event callbacks.

Here is an example of an arrow function that outputs a string and this property
to console in the event of a click on the document:

And here is the same exact event using classic ES5 function syntax:

So what’s the difference?

Here is console output after clicking on document in each case:

Inside the arrow function’s scope this property points to Window object.

In classic ES5 function this property points to the target element that was clicked.

173

What happens here is that arrow function took the Window context with it, instead
of giving you the object that refers to the clicked element.

Inherited this Context

But wait, how did the arrow function inherit Window context in the first place? Is
that because it was defined in global scope (same as the object of type Window)?

Not exactly.

The arrow function inherits the lexical scope based on where it was used, not
where it was defined. Here it so happens that the arrow function was both defined
and called in global scope context (Window object.)

To truly understand this, let’s draw another example, where I will attach arrow
function B() to a click event.

But this time, I will execute addEventListener function from another class called
Classic instead of Window like in the previous example.

Remember that when you use new operator, you execute the function as though
it was an object constructor. This means that every statement inside it will be
executed from the context of its own instantiated object: object, not window.

A new context is created when using new operator to instantiate an object. Any-
thing called from within that object will have its own context.

After running this code and clicking on document, we get following console output:

174

The object instance delimited by [] brackets is of type Classic. And that’s exactly
what happens here.

Event was attached from context of Classic constructor and not from the context
of global scope object Window like in the previous examples.

The event has literally ”taken the context it was executed from” with it into its
own scope via the this property.

This type of context chaining is common to JavaScript programming. We’ll see
it once again when we explore prototype-based inheritance in more depth later in
the book. The idea of execution context may start to become more clear by now.

175

176

Chapter 16

Creating HTML Elements Dynamically

JavaScript creates a unique object for each HTML tag currently present in your
*.html document. They are automatically included to DOM (Document Object
Model) in your application once the page is loaded into browser. But what if we
want to add new elements without having to touch the HTML file?

Creating and appending another element to an existing element will dynamically
insert it into the DOM and instantly display it on the screen as if it were directly
typed into the HTML source code.

However, this element is not typed directly into your HTML document using HTML
tag syntax. Instead, it is created dynamically by your application.

The method createElement natively exists on the document object. It can be
used to create a new element:

At this point none of the created elements are attached to DOM yet.

177

When adding a new HTML element dynamically, it is usually inserted into another
element that already exists in the DOM. But before we can accomplish that, let’s
set some CSS styles on the newly created element.

16.0.1 Setting CSS Style

So far we created an empty element without dimensions, background color or
border. At this point all of its CSS properties are set to defaults. We can assign
a value to any standard CSS property via style property.

In CSS dash (-) is a legal property name character. But in JavaScript it is always
interpreted as the minus sign. Using it as part of a JavaScript identifier name will
cause an error. For this reason, single-word CSS property names remain the same
– style.position and style.display for example. Multi-word property names are
changed to camel-case format, where the second word is capitalized. For example
z-index becomes .zIndex, and border-style becomes .borderStyle.

178

16.0.2 Adding Elements To DOM with .appendChild method

Method element. appendChild(object) inserts an element object into DOM.

Here element can be any other element that currently exists in the DOM.

This method exists on all DOM element objects, including document.body.

document.body

Insert the element into the body tag using appendChild method:

Although very common the body tag is not the only place you can add the newly
created element.

getElementById

Insert element into another element by id:

querySelector

Insert element to any element selected using a valid CSS selector:

179

16.0.3 Writing A Function To Create Elements

Writing your own functions is fun. And sometimes necessary. In this section we will
write our own function that makes it easy to create HTML elements dynamically.
Before writing the function body, let’s take a closer look at its parameters.

Function Parameters

To accommodate for most cases, we don’t need to include all CSS properties, just
ones that have most impact on element’s visual appearance.

Most of the parameters are optional. If you skip them, either default values will
be used – defined using const keyword inside the function body (see next page)
– or not assigned (if you pass null, for example.)

Last parameters on the argument list: r and b (right and bottom) will override
standard placement in top and left corner of the parent element.

Using this function we can create basic HTML elements with one line of code:

180

Function Body

Let’s take a look at the body of the element-creation function:

Figure 16.1: Place this function into separate file common-styles.js

181

Creating UI elements often requires pixel-perfect precision. This function will cre-
ate a position:absolute element (unless otherwise specified) with default size
of 10px in each direction, unless replacement values are supplied via its arguments:
w and h parameters.

As a quick reminder here is the behavior of HTML elements with position set
to absolute based on point of attachment.

Note that the element can be attached to the logical coordinate position within
the parent. For example top:0; right:0 attaches the element to the upper right
corner of the parent.

The direction in which the attached element will move, when its coordinates are
provided using negative values are displayed in the following diagram:

Figure 16.2: This depends on corner the element was attached to using a combi-
nation of properties left, top, right and bottom.

182

Importing And Using element() Function

Let’s import the function we created above into our project.

To import a module type attribute on script tag must be set to "module".

We can now create an HTML element using just one line of code.

In this example we created two elements A and B. Then we nested element B in
element A, and attached element A to the body container.

The result of this code is displayed below:

183

16.0.4 Creating objects using function constructors

Let’s create a function called Season:

To instantiate four seasons:

We just created 4 instances of the same type:

This creates a problem, because function getName is copied 4 times in memory,
but its body contains exactly the same code.

In JavaScript programs Objects and Arrays are created all the time. Imagine if
you instantiated 10000 or even 100000 objects of a particular type, each storing a
copy of the same exact method.

This is rather wasteful. Could we somehow have a single getName function?

The answer is yes. For example, native function .toString() you may have used
before as Array.toString() or Number.toString() exists in memory at a single
location, but it can be called on all built-in objects! How does JavaScript do it?

184

Chapter 17

Prototype

185

17.0.1 Prototype

When a function is defined two things happen: the function object is created,
because functions are objects. Then, a completely separate prototype object is
created. The prototype property of the defined function will point to it.

Let’s say we defined a new function Human:

You can verify that prototype object is created at the same time:

Human.prototype will point to the prototype object. This object has another
property called constructor, which points back to the Human function:

Human is a constructor function, used to create objects of type Human. Its
prototype property points to a separate entity in memory: prototype object.
There is one separate prototype object per each unique object type (class).

Some will argue that there are no classes in JavaScript. But technically, Human
is a unique object type, and basically that’s what a class is.

If you come from C++ background, you can probably refer to Human as a class.
A class is an abstract representation of an object. It’s what determines its type.

Note, prototype property is not available on an instance of an object, only on the
constructor function. On an instance, you can still access prototype via proto ,
but should probably use static method Object.getPrototypeOf(instance) which
returns the same prototype object as proto (in fact proto () is a getter.)

186

17.0.2 Prototype on Object Literal

To draw a simple example, let’s create an object literal:

Internally it is wired into prototype as an object of type Object, even though it
wasn’t created using the new operator.

When literal was created, literal. proto was wired to point to Object.prototype:

Figure 17.1: Here object literal’s proto points to Object.prototype

Object.prototype was already created internally by JavaScript. Whenever a new
object type is defined, a secondary object to serve as its prototype is created.

187

17.0.3 Prototype Link

When an object is instantiated using new keyword, the constructor function exe-
cutes to build the instance of that object.

In this case Object constructor function is executed and we get a constructed
link, that looks like this:

The .prototype property points to a separate object: the built-in prototype object.

In this case it’s Object.prototype. It is similar to Human.prototype from the
earlier example: in this case we just don’t control how Object was created, because
Object is a preexisting built-in type.

188

The instance of an object of type Object has proto property which points to
the prototype object of the constructor from which it was instantiated.

This three-way relationship between the Object, secondary prototype object that
was created, and the instance of that object with proto pointing to Object’s
prototype object is a peculiar structure.

This pattern represents just one link in a prototype chain of objects.

17.0.4 Prototype Chain

It can be argued that Array is a child of its parent type Object.

Object.prototype is Object, but not because Object is inherited from Object.
This is simply because the prototype itself is just an object: they co-exist.

You can think of this as Object’s prototype being null, because it’s the top-level
object on the prototype chain. In other words Object does not have an abstract
prototype. Object does have a ”ghost” prototype object just like any other type.

189

17.0.5 Method look-up

When you call Array.toString() what actually happens is, JavaScript will first
look for method toString on the prototype of Array object. But it does not find
it there. Next, JavaScript decides to look for toString method on the prototype
property of Array’s parent class: Object.

It finally finds Object.prototype.toString() and executes it.

17.0.6 Array methods

In previous section we’ve taken a look at prototype chain and how .toString
method is found by traversing the prototype chain. But .toString is available on
all objects that stem from the Object type (which is most built-in types.)

The same is true for Number, String and Boolean built-in types. You can call
toString method on each one of them, and yet it exists only in one place in
memory on Object.prototype property.

190

Methods native to Array type should exist on Array.prototype object.

It is obvious that there isn’t much use in having higher-order functions like .map,
.filter and .reduce attached to Number or Boolean types.

The fact is, every single Array method already exists on Array.prototype:

Figure 17.2: Looks like our favorite methods .map, .filter and .reduce live on
Array.prototype object.

If you want to extend functionality of the Array method specifically, attach a
method to Array.prototype.my method.

191

17.1 Parenting

But how does Array, Number, etc. know that Object is its parent?

That’s exactly what prototype inheritance is about: creating links between children
and parent objects. Often this is referred to as prototype chain.

Furthermore, it can be said that prototype structure provides some sort of imitation
of ”traditional” (or ”classic”) class inheritance as seen in C++, which is one of the
few truly object-oriented programming languages. (It actually supports all features
that make a language to be considered object-oriented.)

17.1.1 Extending Your Own Objects

Number’s and Array’s parent is Object. This is great, but what if we want to
extend our own object from another object?

As we saw from the preceding diagrams proto getter is part of internal proto-
type implementation. It’s crucial for establishing the link, but we shouldn’t mess
with it directly. For the same reason.

JavaScript is a dynamically typed language, so you can try to create some object
constructors and rewire the proto property on their prototype object to the
”parent”, but this is often considered to be a hack. In practical coding situation,
you will actually never need to do anything like this. There is literally no software
you would possibly be writing that modifies the internal function of prototype.

After EcmaScript 6 you are encouraged to create and extend classes using class
and extends keywords and let JavaScript worry about prototype links.

192

17.1.2 constructor property

The constructor property of Object class points to Function:

The constructor property of Function class points to Function:

This creates a circular dependency around the Function class:

Function.constructor is Function (circular.) But Object.constructor is also Func-
tion. This can imply that a class is constructed using a function. Yet, Function
itself is a class. This is circular dependency.

193

17.1.3 Function

Function is the constructor of all object types.

194

17.2 Prototype In Practice

Understanding how prototype works is a gradual process. It might be a difficult
task, considering JavaScript language has evolved over the years. To get a better
idea of how it all works, we’ll start from the very beginning.

We’ve already covered the theory behind prototype in the previous section of this
chapter. In this section we will finally arrive at prototype in terms of how fits into
the big picture when it comes to actually writing code.

This section is a thorough walk-through that demonstrate different ways of working
with objects. And what’s a better place to start than the object literal?

17.2.1 Object Literal

In this example cat object was defined using a simple object literal syntax. In
some ways, under the hood JavaScript wires up all the prototype linking.

Throughout the following sections of this chapter we will gradually update this
example and build on it to finally arrive at how prototype can be useful to you as
a JavaScript programmer.

Figure 17.3: Meet Felix the cat, represented by an object literal.

We named our cat specimen Felix, gave him 0 level of hunger and 1 unit of energy.
Currently Felix is in idle state. Just where we want him to be!

195

Methods sleep, wakeup, eat and wander were added directly to the instance
of the cat object. Each method has basic implementation that either restores or
depletes cats energy.

Figure 17.4: To restore cat’s energy, we can invoke the sleep method.

196

17.2.2 Using Function Constructor

Even after some sleep Felix feels a bit of melancholy. He needs a friend.

But instead of creating a new object literal, we can place the same code inside a
function called Cat to represent a global Cat class:

Note that all that was done here is we moved the exact same code we wrote in the
previous section into a function and returned the object using the return keyword.

The methods implementation remained the same too. I simply used the comment
markers /* implement */ to avoid repeating the same code again.

Now, saving space, we can create two separate cats: Felix and Luna.

197

17.2.3 Prototype

Branching out from previous example, we see a problem.

All of the methods of Felix and Luna take twice as much space in memory. This
is because we are still creating two object literals for each cat.

And this is the problem prototype tries to solve.

Why don’t we take all of our methods and place them at a single location in
memory instead?

Now all of our neatly packaged methods share a single place in memory.

Let’s go back to our Cat class implementation, and wire the methods from the
above prototype object directly into each method on the object:

Before we see how JavaScript does this, let’s take a look at something else.

198

17.2.4 Creating objects using Object.create

In JavaScript we can also create objects using Object.create method, which takes
a clean slate object as one of its arguments:

Now let’s take a look at kitten:

Mysteriously, object kitten has only two methods – it is missing hunger property.

To explain this, let’s see what will happen if we actually try to output it:

Console output:

But wait, the console is telling us hunger actually exists. What’s going on here?

199

This behavior is unique to objects created via Object.create method. When we
try to get kitten.hunger, JavaScript will look at kitten.hunger, but will not find
it there (because it wasn’t created directly on the instance of the kitten object.)

Then what happens is JavaScript will look at .hunger property in cat object.
Because kitten was created via Object.create(cat), kitten considers cat to be
its parent so it looks there.

Finally it finds it on cat.hunger and returns 1 in console. Again, property hunger
is stored only once in memory.

17.2.5 Back To The Future

Let’s rewind a bit and go back to the earlier example from section called Using
Function Constructor fully equipped with new knowledge about Object.create.

200

Let’s delete the part where we wired our own prototype object into the methods
of Cat class, and instead pass them into the native Object.create method which
will now reside inside our Cat function (source code listing above.)

Now we can create felix and luna via this new Cat function as follows:

Now we get the ideal syntax, and sleep() is defined only once in memory. No
matter how many felixes or lunas you create, we’re no longer wasting memory
on their methods, because they are defined only once.

17.2.6 Constructor Function

Let’s recall that each Object has a prototype property pointing to its ghost proto-
type object:

So now what we can do is attach all Cat methods directly to its built-in prototype
property instead of our own ”prototype” object we created earlier:

201

In this scenario, JavaScript will look for .sleep on luna object, and will not find
it there. It will then look for .sleep method on Cat.prototype. It finds it there
and the method is invoked.

The same happens here, .wakeup method is executed on Cat.prototype.wakeup,
not on the instance itself.

Therefore the main purpose of prototype is to serve as a special look up object,
which will be shared across all instances of objects instantiated with its constructor
function while preserving memory.

202

17.2.7 Along came new operator

We can wipe out everything we learned up to this point and replace it all with
new operator – which will automatically do every single thing we’ve just explored
in the previous sections of this chapter!

Let’s remove Object.create and return cat from our class definition.

In JavaScript functions defined with function keyword are hoisted. This means
we can add methods to Cat.prototype before Cat is defined:

Followed by Cat definition:

Now we can instantiate luna and felix as follows:

203

17.2.8 The class keyword

Everything we’ve just explored about prototype was converging toward the class
keyword added in EcmaScript 6.

How prototype works is a common subject during JavaScript interviews. But in
production environment, you will never (spelling is correct) have to touch it at all
in your entire career as a front-end software engineer.

Use class and new keywords. Let JavaScript worry about prototype:

In the next section we will take this concept further to design an entire appli-
cation using OOP: Polymorphism with examples via Inheritance and Object
Composition and just a bit of Functional Programming style.

204

Chapter 18

Object Oriented Programming

In this chapter we will exemplify OOP by building a cooking range with stove.

The best example of Object Oriented Programming would be based on many
different types of objects. We will define a class for each abstract type: Fridge,
Ingredient, Vessel, Range, Burner, and Oven.

We will take a look at two key OOP principles: inheritance and polymorphism
in the sense of how it actually relates to JavaScript code.

18.1 Ingredient

205

The Ingredient class will be our generic class for instantiating ingredients from.
It will have properties: name, type and calories which will be enough to describe
pretty much any ingredient we might need.

Here’s a list of the common ingredients we will create: water, olive oil, broth,
red wine, bay leaf, peppercorn, beef, chicken, bacon, pineapple, apple, blueberry,
mushroom, carrot, potato, egg, cheese, sauce, oatmeal, rice, brown rice, cheese.

I think it’s enough to make several interesting meals! Ingredient class itself will
have static properties to describe the type of the ingredient. We’ll take a look at
how this works when we get to source code. (eg: Ingredient.vegetable)

18.2 FoodFactory

FoodFactory will be a class that will create a completely new instance of an
ingredient. This way we don’t end up reusing the same Ingredient object instance
in different cooking vessels at the same time! Because, as you may know, in
JavaScript variable names are only references (links) to the same object instance.

18.3 Vessel

Classes Pot, Pan and Tray demonstrate inheritance because they are derived from
the same abstract class Vessel (as in cooking vessel.)

206

Vessel class will have an add() method for adding ingredients. This way we can
choose which ingredients to place inside each created vessel for baking, boiling or
baking (depending on which vessel type was chosen.)

18.4 Burner

There will be four burners on the range surface, each represented by a unique
instance of the class Burner. You can turn burners on() or off().

Vessels loaded with ingredients can be placed on each of the four burners.

Once a burner is turned on, whatever is in the vessel placed on a burner whose
state is ”on”, will be considered to be cooking, but only when the range is running
for a period of time by calling: Range.run(minutes).

207

18.5 Range Type and The Polymorphic Oven

RangeType.Gas and RangeType.Electric represent a different internal imple-
mentation for generating heat.

We won’t go into deep detail on implementing gas or electric range, we’ll simply
write a heat generator function that converts an energy source into a heat unit.
The main idea is that, even though RangeType implementation can change from
Gas to Electric our range API code will still work without additional modification.

Polymorphism

Here polymorphism is demonstrated via object composition by integrating an
Oven object directly into the Range object. Object Composition is when you
combine two or more objects together to achieve polymorphism, instead of using
inheritance like we’ve seen in Vessel example.

In code, object composition can manifest itself as new object instantiated as one
of the properties of another object, usually in its constructor function.

For example in Range constructor: this.oven = new Oven() (instead of inher-
iting Oven from Range.)

208

18.6 Class Definitions

Programming in general can be split into two parts: defining things and using
them. In this section, let’s define every single class we need to demonstrate OOP
principles. Comments will be provided where explanations become necessary.

Each class will be placed into a separate JavaScript file. For example Range will
live in ./range.js and Ingredient in ./ingredient.js. The import and export
keywords will be used to include them in your main application file.

After going over all class definitions, we’ll implement them.

But first...

18.6.1 print.js

First, let me just say that console.log can be a bit cumbersome of a name. I
renamed the function to simply print. This will be more aesthetically pleasant to
read throughout remaining code.

Yes, we are overwriting native window.print method, but in this particular appli-
cation we don’t have a use for it and it makes our code look more understandable.

209

18.6.2 Ingredient

18.6.3 FoodFactory

FoodFactory class will help us spawn a unique instance of the Ingredient object.

210

18.6.4 Fridge

Fridge is a pretty simple class.

It utilizes higher-order Array method filter:

You can load the refrigerator with an array of objects of type Ingredient. Want
to grab just the vegetables? No problem! Just make the following call:

In console output, we get an array of only vegetables!

211

18.6.5 convert energy to heat

Let’s define our core energy to heat transfer function:

Guesswork

Here, energy is naively calculated on the premise that electric range is less efficient,
so it will produce roughly 50% less percent energy than a gas-based range. This
is all of course only speculative. If we had the actual hardware with us, we would
modify this function to work with accurate numbers based on an actual model.

Separating Implementation

However, this function is important because it’s at the core of range implementa-
tion. If you change the internals of how this function does what it does, our main
class API will not be affected.

This means that in order to upgrade from RangeType.Gas to RangeType.Electric
we won’t have to rewrite any part of our code anywhere else!

This ability is offered to us if we follow Object Oriented Programming principles.
Of course, it can be imitated using any other similar pattern or logical construct
but, it is often encountered in the context of OOP.

212

18.6.6 Vessel

Vessel is the only class we have that demonstrates object inheritance.

We can start by defining its constructor:

The calories method will use a reducer to calculate the total number of calories
currently in the vessel:

The add method will add one ingredient to the vessel:

The cook method will cook contents of this vessel:

213

Let’s extend Pan, Pot and Tray from Vessel. Note that every time you extend
an object from its parent, you must call super to invoke the super constructor of
the parent object.

Inherited classes Pan, Pot and Tray inherit all default functionality from Vessel
class. And we didn’t add a single line of code to any of their own implementation!

Finally, export Pan, Pot and Tray. Note, we don’t really have to export Vessel
itself because this is our main abstract class that provides default implementation
but it is never used directly anywhere.

214

18.6.7 Burner

And now the Burner class itself:

We could have defined static properties On and Off inside the class itself using
static keyword (like we did earlier with Ingredients class) but just to show that
alternatives are possible (and you might see this in someone else’s code) the static
properties were defined directly on the Burner class, just outside of its body:

215

18.6.8 Range

Polymorphic Oven

The Oven can be polymorphically added to Range. We’ll see how in just a moment!

Our Range class has some dependencies: print, Burner, BurnerIndex and con-
vert, so let’s import them from their respective source files.

On the next page we will start defining our Range class.

The Range class is the core to the whole cooking system. It ties all classes
together into one cookware machine!

216

First, we’ll start a new class Range and prepare it for exporting:

Let’s take a look at the constructor of Range:

In the constructor we add four new burners to our Range object. This is poly-
morphism (composing one object from other objects.) In this case our Range
is composed of 4 separate Burner objects. Using inheritance would make less
sense here. How can you ”inherit” a range from burners, or burners from range?
It makes little logical sense. Here a Burner is part of the Range object, which
seems to more accurately relate to how things are composed in reality.

217

Range.install oven()

We can install our polymorphic oven at a later time by calling install oven:

Range.place(index, vessel)

The Range.place method is used to place an existing Vessel object onto one of
the burners at any of the four available locations.

Range.run(minutes)

Assuming our cookware vessels were placed onto one or more burners using Range.place
method described above, we can now operate the range for a number of specified
minutes by calling Range.run(1);

218

18.6.9 Putting It All Together

All of our classes are defined and we are ready to do some cooking!

First, let’s add all dependencies to our main JavaScript file:

One neat thing to notice here is we never have to import print function into
our main program from ./print.js file – it is completely internal to our range
implementation.

But before we continue...

The word Ingredient is long. The statement for instantiating an object of this
type didn’t fit on one line of code in this book. You will see this in the source
code on the next page. So I simply created a reference to it and called it Ing.

Remember how variable names are references to the original object. This means
our Ing variable is a reference to exactly the same constructor as Ingredient. No
copies were made.

Let’s head to the next page where we will create actual ingredients as instances
of the class Ingredient.

The Ingredient constructor takes: name, type and calories. I looked up calories
per serving for each ingredient on Google.

219

Define ingredients

Instantiate the range object

Next time we run range.run(1) we can cook everything that was placed on the
stove for 1 minute. But until that can happen we first need to create some pans
and pots, and put some ingredients in them.

220

Now that we created the range, let’s created our cooking vessels!

Let’s drop some ingredients into our pot in preparation for making a beef stew:

But there is a problem, JavaScript treats variables as references to the same object.
So if we add water, broth, beef, etc... to another skillet, essentially we are adding
the same ingredients we already placed in the pot object above.

This means if we turned on the range, we might be cooking the same ingredients
in different cookware vessels! This is where a factory class comes in.

The FoodFactory class will return a new instance of the ingredient, instead of
a reference to the existing ingredient object instance: (see FoodFactory class
implementation to understand how it does it.)

221

Using FoodFactory to make sure all ingredients are unique object instances:

Now, let’s place all pots and pans on the burners:

And turn them on:

Finally, let the range run for 1 minute:

222

Chapter 19

Events

Events are functions executed at the time when a specific action occurs. For exam-
ple, if user clicks on a UI button or any other HTML element, browser dispatches
an ”onclick” event associated with HTML element that was clicked.

There are two types of events: browser events and synthetic events.

19.0.1 Browser Events

Built-in browser events are already pre-determined and executed by the browser
when an action occurs. You don’t need to create them yourself, only to intercept
them – if you wish something else to happen after they occur.

When browser window changes size, a resize event is automatically dispatched.
This might be a good place to adjust your UI layout to the new area.

Mouse events are also an example of built-in browser events. When a mouse
is moving onmousemove event is dispatched, continuously re-calculating mouse
position and exposing them via event.clientX and event.clientY property names.

When the mouse button is pressed down onmousedown event is dispatched and
when it is released onmouseup event will occur. You can intercept these events
and supply a callback function that contains commands you want to be executed
after the event occurs. This is incredibly useful for implementing custom UI expe-
rience: for example, display a custom menu when a mouse button is clicked.

223

19.0.2 Synthetic Events

Built-in browser events are nice, but to truly understand how they work, we’ll start
with synthetic events. This will give us a good idea of how events are created and
dispatched in JavaScript.

Event Object

You can create and dispatch your own events using Event object. Events created
in this way are called synthetic events because they are not generated by the
browser itself, but rather by your program. Let’s create a synthetic event just to
see how events work in JavaScript at their basic level:

Now that the startEvent is created we need a way to intercept it and run some
code when it is detected. First step to begin listening for the ”start” is to call
addEventListener method with ”start” as first argument:

The anonymous callback function will be executed when the event occurs. It takes
one parameter called event. You can name this parameter anything you want but
event is usually ideal to avoid confusion.

Event Capture And Event Bubbling

The last parameter useCapture is set to false to disable event capture mode.
Basically when it’s set to true it means the parent element will be notified of the
event first, and only then the element that was actually clicked. If it is set to false,
”event bubbling” will be used, which means the opposite: first, the clicked element

224

will be notified of the event, and then the event will be dispatched progressively
to all of its parents.

The story goes way back to implementation in the Netscape Navigator browser
and initial versions of Internet Explorer.

Long story short, Netscape wanted to enforce event capture. And Internet Ex-
plorer wanted to enforce event bubbling. The final consensus was to use both.

Since that time addEventListener function will actually listen to both capture
and bubbling. But the last parameter useCapture allows the programmer to make
a choice for which event propagation method should take precedence:

In modern browsers, the useCapture parameter defaults to false if it’s not specified,
but older browsers require this flag to be set manually. So in modern JavaScript
it is usually explicitly set to false but only for backwards-compatibility.

dispatchEvent

Once addEventListener function is executed, the browser will be continuously
listening for the ”start” event to occur. But the callback remains dormant until
event is actually dispatched using the dispatchEvent method:

225

The dispatchEvent method actually triggers our custom ”start” event. It usually
takes one argument: the variable pointing to the actual event object created earlier.

removeEventListener

Event listeners take memory and can affect performance of your program if there
are too many listeners running at the same time. If we no longer need to listen
for the event it’s a good idea to call removeEventListener method.

Let’s say we started to listen for ”click” event on document:

To remove this event listener we must also provide the same callback function that
was originally passed to the addEventListener method above:

Anonymous functions cannot be used to remove event listeners, so the following
call will not remove the event listener:

Whenever you use an anonymous function expression, it will occupy a new location
in memory. This means removeEventListener will not be able to locate it among
already existing callbacks.

The original callback function name is required because it is located at a unique
location in memory. That’s what essentially lets removeEventListener method
know exactly which listener to unbind.

Note removeEventListener(”click”) will not remove ”all click events”. Again,
you must specify original function name that was used to attach the event as the
second argument of removeEventListener to successfully unbind the event.

226

CustomEvent Object

Events can carry additional data, specifying details of the event. For example, if a
mouse is clicked, we need to know the X and Y location of the mouse pointer at
that time. If browser was resized, we need to know the size of the new client area.

In order to add detail to the event the CustomEvent object should be used.

But first, let’s create the payload object. This object must have a property named
detail which will store additional information about our custom event – indicating
that a pin was placed on a map with position and an info label:

Now, let’s create our new custom ”pin” event:

This callback function will be triggered when the event is dispatched:

Finally, start listening for the ”pin” event:

The custom event is dispatched in exactly the same way as a regular event, by
calling the dispatchEvent method.

227

Whenever someone clicked a mouse button on the map area, you can dispatch the
”pin” event using the dispatchEvent method:

19.0.3 Event Anatomy

Let’s take a look at the CustomEvent in console. Important parts were highlighted:

Final Words

Event objects are abstract. Each event usually carries details that are relevant to
event type. So when designing your own events, think about what type of data it
should provide. This is usually specific to the purpose of your program.

228

19.0.4 setTimeout

You can time events using setTimeout function.

Create callback:

Execute the callback 1 second (1000 milliseconds) after setTimeout is called:

Let’s try something else:

Execute callback 1 second in the future:

Resetting the timeout using clearTimeout function will cancel the event and
prevent it from occurring in the future:

19.0.5 setInterval

The setInterval function works exactly like setTimeout, except it will continue
executing the callback function for an indefinite number of times at a time interval
specified as its second argument:

229

To stop the events, you can use clearInterval function:

19.0.6 Intercepting Browser Events

Many built-in events already have callback functions attached to global window
object. This means you can override them by providing your own version:

The events will still take place, but the function you attach to their name will be
executed in addition to the built-in code.

But window object is not the only place where events can be overwritten. For
example, it is possible to attach events directly to HTML elements. And if the
selected element supports a particular event type, it will be overwritten:

19.0.7 Display Mouse Position

To display where the mouse pointer is located within an element, or relative to
the entire page, you can intercept the onmousemove event and output mouse
position coordinates 1attached to event argument:

230

In the console we will observe similar output to:

The click event, and many others, can be overwritten as follows:

19.0.8 Universal Mouse Event Class

I can’t count how many times I had to write mouse code all over again every time
a new project required custom UI functionality. While simply intercepting common
mouse movement and click events is enough to track when buttons are clicked,
common UI projects require calculations not provided by built-in mouse events.

Custom modules you might want to write require knowing things like: ”Is the user
currently dragging an object with a mouse?” If you are working on a slider UI, you
will most definitely need to answer the question: ”What is the distance between
last mouse click and current mouse position?”

In this section we will write a reusable Mouse class that will put an end on ever
having to write mouse code again in your future JavaScript projects: just export
Mouse class from mouse.js file, and you’re ready to go.

231

Contents of mouse.js file.

232

Including And Using Mouse Class

Just store this code in mouse.js and every time you need to work with mouse
coordinates, instantiate the Mouse class as shown in the next code sample:

Mouse Class Explained

From now on, all coordinates we might need are automatically calculated and

233

available on the instance of the Mouse class.

The mouse.memory property holds the position where the mouse was clicked last
time. If user is still holding the mouse button down, which is tracked by the boolean
mouse.dragging variable, then mouse.difference property will contain distance
between the previous click and where the mouse pointer is currently located.

This is useful for tracking distance of a custom scrollbar, or similar slider UIs. If
the mouse is hovering over the slider handle area and user clicks the mouse button,
and the mouse button remains pressed down, then the slider should move the same
amount of distance specified in difference.x or difference.y property, depending
on whether the slider is horizontal or vertical.

When mouse button is released, all properties are reset to 0 again.

A bit more can be said about mouse.difference property when it’s negative. If
the mouse is used to ”draw” a rectangle on the screen, but the vector cast from
previous click location is negative, then mouse.inverse property will contain the
upper left corner of the rectangle. If the distance vector is positive, then the upper
left corner will be naturally stored in mouse.memory.

234

Chapter 20

Network Requests

Applications dealing with back-end code often communicate via HTTP requests.
In this section we will explore several different methods.

One of the first and simplest ways of initiating an HTTP request is by creating an
instance of the XMLHttpRequest object:

This object has methods open and send. But before calling them, we need to
define an endpoint URL. In this example, let’s simply download the source code
of jQuery library from a CDN location. But it can be any other type of file:

Now we can call the URL with either ”GET” or ”POST” method:

To get the actual value returned from the URL endpoint, we need to listen to
”state change” event which will be executed soon as the content is returned:

235

You can create an HTTP request to fetch almost any type of data. It doesn’t
have to be jQuery library. Usually an API you are connecting to will pack the
return value into a JSON object containing a list of items, ready for parsing by
your application and displaying in the UI view.

This is usually done in production code as shown in next example:

236

Here are the contents of object.js file – it is simply an object represented by JSON
notation. Notice [] brackets:

When an HTTP request is executed using open and send methods, the onreadys-
tatechange event will actually be fired 4 times, each with state changing from 1 to
2 to 3 and finally to 4. We are only concerned with final stage 4, at which point
the request will be considered completed and return 200 status.

It is important to check for this.status == 200. Because this is the only place
where we can be sure that the event completed successfully.

Next, we retrieve contents of object.js file, which is the JSON object shown
above, in string format. But we need to convert it to an actual JavaScript object.
This is done via JSON.parse method.

We then store individual properties json.id and json.name in variables id and
name respectively.

Finally, the id and name are displayed in the UI of the app. This could be two div
containers prepared to store this data.

If multiple JSON objects are received, you should probably convert them to an
array (using Object.entries method) and iterate through them using .forEach,
.map or other higher-order functions.

In this case object.js could include multiple objects separated by comma:

237

20.0.1 Callback Hell

Callbacks are functions that return after an event is executed. This way we can
write in our custom code, wrap up loading animations, and do clean up.

For a long time, before EcmaScript 6, callbacks were extensively used as a tool to
execute asynchronous calls. As applications grew more complex, multiple callbacks
were chained up together because each call relied on completion of a previous task:

Sailor API

You can’t build a boat until you fetch some wood. You can’t sail the ocean
until the boat is built. You can’t discover an island until you can sail the ocean.
Certainly, you can’t dig for treasure without exploring an island!

Let’s take a look at how imaginary Sailor API could be used to achieve a series of
actions that depend on each other.

A series of calls written this way share the problem of dependency. In addition,
a large gap of time can be created between each call, if at least one of the API
calls lags, significantly slowing down the entire process. Wasn’t asynchronous code
supposed to happen at the same time?

Besides, inside each callback we must manually check whether the previous request
returned successfully. This produces code that looks complicated and hard to read.

This ugly code is often referred to as Callback Hell. How can we escape from it?

238

20.0.2 Promises

Using just callbacks in some situations where one event depends on results returned
from another event might result in complicated code.

A Promise object provides a pattern for checking whether an action fails or suc-
ceeds. Then, if it does succeed, it returns another promise.

The Promise object takes two parameters: resolve and reject:

The internal logic of a promise is entirely up to you.

If you are validating a password, as in above example, you will determine whether to
call the resolve or reject command. Let’s take at resolve and reject individually
before putting together a complete promise.

20.0.3 Promise.resolve

The resolve method indicates that the promise has been successfully fulfilled and
contains the return value. For example, it can be a string:

In the same way, the following promise is resolved to ”resolve value”, which tech-
nically can be a string, number, or even another promise:

239

The then method intercepts the value in the event of successful outcome as
a response to resolve method. In the next example then method is used to
intercept ”resolve value” message.

20.0.4 .then

The then method receives the resolve value:

Console:

20.0.5 .catch

The catch method responds only to reject method. In this example, it will not
even be executed because all we did was call resolve method by itself. But it’s
possible to attach a callback to it to catch errors later:

20.0.6 .finally

The finally method is executed regardless of whether event succeeded with resolve
method or failed with reject method. It is a good place for cleaning up the code

240

or update the UI view (for example hide the loading animation):

20.0.7 Promise.reject

But what happens in cases when a condition isn’t met and the promise is rejected?

Here we paired a reject method with catch. The then method is never called on
reject action. But the finally method will be called to wrap things up:

20.0.8 Putting It All Together

Because a promise returns a promise object, we can write everything in a single
statement:

241

Here is another similar but slightly different pattern. If it makes the code cleaner,
you might want to separate the promise call from then and catch calls:

20.0.9 Promise.all

Unlike an HTTP request, promises can resolve any statement – including simple
variable values. Having said this, we can resolve multiple promises at once using
a single call to the Promise.all method as shown in the following example:

242

243

20.0.10 Promise Anatomy

20.0.11 Final Words

In many traditional cases, the following pattern is usually used:

244

20.0.12 Axios

Axios is a popular Promise-based library for talking to the database.

Use the command above to install it on your Node server.

Then, to include Axios directly into your JavaScript file:

Or to embed it directly into your HTML page:

Now let’s say we have an endpoint /get/posts/:

As you can see Axios follows the same Promise pattern we explored in previous
section. Surprisingly, there isn’t much more to it. You can use Axios to provide
an elegant solution for talking to an API.

The complete Axios documentation is available at https://github.com/axios/axios

245

20.0.13 Fetch API

The built-in fetch API offers another Promise-based interface for talking to a web
server:

20.0.14 Fetch POST Payload

When an application requires talking to a database server, you will find yourself
sending and receiving data from an endpoint. An endpoint is simply a URL
location that performs specific action. What it does is determined by the API
server. It is often part of entire API that contains multiple endpoints.

For example: /get/messages can be an endpoint that returns a JSON object
containing messages.

But requests come in two common flavors: POST and GET. And when using
POST, we can attach a payload object to communicate detail. Let’s form POST
request that grabs messages but only for user ”Felix” whose user ID is 12:

246

Form the request callback:

Finally call fetch method with URL and params:

20.1 async / await

Promise-based code suffers from similar issues as regular callbacks. After all then,
catch and finally are still basically callback functions. Promises just make code
cleaner by segmenting the callbacks into generalized predictable results!

This means that there is still potential to end up in Promise Hell rather than
Callback Hell by stacking callbacks. Promises provide a nice attempt at making
the situation better. But code can be even more elegant than this with async.

The Basics Of async Keyword

First, let’s take a look at what exactly happens when we call two functions:

Function y() will be executed soon as function x() returns:

247

This is exactly what you would expect from asynchronous code, which means
code executes in a sequence after a previous command finishes executing, instead
of two functions executing simultaneously at the same time.

Now let’s take a look at what happens when we use async keyword.

First, the async keyword can be used only on functions. To do so, simply prepend
async to the function definition:

I know that we are trying to get away from the Promise pattern we saw in an earlier
section. This is true, but the async function now actually returns a promise object.
We’re just breaking away from the Promise Hell pattern here in pursuit of cleaner
code. But we still can call .then method on the function:

Console output:

Remember that first argument of .then method is the resolve (success) function,
and the second argument is reject. So when we pass console.log as the first
argument, it treats it as the function that will be executed to display the result.

Essentially, the two examples below are exactly the same except the text in the
string return value:

They both return a promise. Even if function a() doesn’t explicitly specify it!

Let’s call both functions and then call then on the return value:

248

So far the result is just what you would expect:

20.1.1 await

So where does await fit in? The async and await keywords are usually used in
combination with each other. The await keyword is prepended to any statement
within an async function:

Note: Using await outside of async function will generate an error.

Here we added await to a simple math operation that calculates square root of
1. But the important thing here is the fact that now function b() will return first,
even though it is second in the execution order:

Console output:

249

Prepending await to a statement will execute it as if it were a promise. The
execution flow in the async function will pause on that statement until it is fulfilled.
This means that return ”first” does not return immediately like b() function.

This is just a simple example to demonstrate a point.

In reality, await is used primarily as the most elegant solution for dealing with
multiple API endpoints.

The most important thing about async/await is that it allows you to run syn-
chronous code while it is still written in asynchronous form in your program. This
solves all of the problems with Callback Hell, keeps your code clean while providing
maximum efficiency for executing multiple API requests.

The best way to demonstrate it is to put await in the context of a try / catch
statement. Let’s take a look at that in the following section.

20.1.2 async / await with try-catch

Let’s take a look at the following example where async and await are implemented
for common purpose of grabbing user info object:

We will wait until API.get.user produces a value and stores it in user variable.

Until then none of the following await statements will be executed. This is ideal,
because the two await statements that follow require user object, which will be-
come available only if user was authenticated.

250

Let’s assume if API.get.user fails, API.get.roles and API.get.status will fail
silently and a null object will be returned:

20.1.3 Final Words

async / await syntax is the epitome of synchronous programming in JavaScript.
Functions decorated with async conveniently return a promise object.

Here we get both of both worlds. Our functions take on the asynchronous order,
but execute synchronously, just like callbacks, promises or fetch API requests.

We’ve finally escaped from both Callback Hell and Promise Hell without sac-
rificing clean code.

Does it mean you have to abandon using the Promise object with new operator?
Of course not. All of the techniques mentioned in this chapter can be used to
write successful applications. It depends on design choices you make.

The async / await keywords help us execute code synchronously, without ever hav-
ing to directly use callbacks or promises, and without modifying the asynchronous
nature of code.

20.2 Generators

Generators are similar to async. They came out prior to async keyword, but they
share a similar pattern. The reason I wanted to mention them here is because it
is still common to see them in JavaScript code.

A generator is defined by adding the star (*) character to the function definition:

251

You can also create it via anonymous function definition assignment:

20.2.1 yield

Just like async works together with await, generators work together with yield
producing exactly the same effect.

But we can’t call generator() function directly. Because every time we do, it will
be reset to first yield statement. Also, a single generator is designed to be used
only once. After it returns, you can not call it again.

For this reason, proper way to initialize new generator is by variable assignment:

In a similar way to then method on a Promise object, generators have next
method. Whenever you call next on a generator, the next yield statement from
the generator’s function body will be executed:

Generators don’t require a return value, but if there is one it will be treated as
the final value. Note that next produces an object like {value: 1, done: false},
instead of a single return value. Last statement returns done: true

252

After this, generator cannot be rewound and repeated again and should be dis-
carded. To create a new one re-assign generator() function to a variable again.

20.2.2 Catching Errors

To catch an error using a generator you can use throw method:

Within the generator function, make sure to branch out with try-catch statement.

An error should be thrown if at least one yield statement has been already exe-
cuted. Of course, yield 1, yield 2 and yield 3 would be something more mean-
ingful in a real-case scenario, such as an API call.

253

254

Chapter 21

Event Loop

As a JavaScript programmer, you don’t need to understand actual implementation
of the event loop. But understanding how the Event Loop works is important for
at least two reasons:

First, questions related to the event loop are often asked at job interviews.

The second reason is a bit more practical. By developing an awareness of how
it works, you will be able to understand the order of events as they occur, for
example, when working with callbacks and timers such as setTimeout function.

In the previous section we’ve seen how when functions are executed they are
placed on the Call Stack. We can even use the stack trace to track which function
was originally called to produce an error. This makes sense when working with a
deterministic set of events (one statement will proceed to be executed immediately
after the previous one is finished executing.)

But writing JavaScript code is often based on listening to events: timers, mouse
clicks, HTTP requests, etc. Events assume there will be a period of waiting time
until they return after accomplishing whatever task they were set to perform. But
while events are doing their work, we don’t want to halt our main program.

For this reason, whenever an event occurs, it is handed over to the Event Loop.

255

In abstract terms, the Event Loop can be thought of as just what it sounds like.
It’s a loop, with a process that keeps running in circles.

Whenever an event occurs, which can be thought of as a task, it is delegated to
the Event Loop, which ”goes out of its way” to pick up the task.

But it’s not that simple. The event loop handles events such as mouse clicks, and
timeouts. But it also needs to take care of updating the browser view:

256

The process in the event loop will continue to make rounds, sometimes spending
time processing tasks or updating the view.

The whole experience of how users interact with your front-end application will
often depend on how optimized your code is for the event loop.

To create smooth user experience, your code should be written in such way, that
balances task processing with screen updates.

In modern browsers updating the view usually consists of 4 steps: checking for
requestAnimationFrame, CSS style calculations, determining layout position,
and rendering the view (actually drawing the pixels.)

Choosing the right time to update the browser is tricky. After all setTimeout
or setInterval were never meant to be used together with rendering the browser
view. In fact if you’ve tried to use them to animate elements, you may have
experienced choppy performance.

This is because setInterval hijacks the event loop, by executing the callback (in
which many place their animation code) as fast as possible. For this reason many
have moved animations that can be done in CSS to their respective CSS style
definitions, instead of performing them in JavaScript.

However, choppy performance can be fixed with requestAnimationFrame. What
happens is that event loop will actually sync to your monitor’s refresh rate, rather
than execute each time setInterval fires its callback function.

257

258

Chapter 22

Call Stack

The call stack is a place to keep track of currently executing functions. As your
code executes, each call is placed on the call stack in order in which it appears in
your program. Once the function returns it is removed from the call stack.

Placing a function call onto the stack is called pushing and removing it from the
call stack is called popping. Same idea behind Array.push and .pop methods.

Figure 22.1: The main entry point is pushed on the stack.

Figure 22.2: Every time console.log is called, it’s pushed to the call stack.

Figure 22.3: The console.log prints 1 to the console and returns. It is then popped
from the stack. Main function continues to run until it returns. This usually will
happen when browser is closed.

259

How does this apply to writing code?

The call stack is a fundamental building block of computer language design. Most
languages implement a call stack in one way or another. But how does this apply
to those who are simply writing code and not designing computer languages?

Call Stack Example

Complex tasks have priorities. Many things require to be done in a logical order.

When writing software you will often call one function from the body of another
function. You can’t mop the floor until you fill the bucket with water. You have
no reason to fill the bucket with water until you decide to clean the house first:

Figure 22.4: Calling clean house triggers a chain of function calls.

Our last function mop floor throws an error. When this happens a stack trace is
shown in the console.

260

Figure 22.5: Call stack helps us identify the root source of the error.

Error displays the trace of the call stack history, starting with the most recently
called function mop floor, in which the error occurred. When debugging this help
us trace the error all the way back to the original function clean house.

Most of the time you won’t be concerned with thinking about them when writing
code. But you might need to understand them when debugging complex large
scale software.

22.1 Execution Context

The call stack is a stack of execution contexts. When discussing one we will
inevitably run into the other.

You don’t need to understand execution context or the call stack in great detail
to write JavaScript code. But it might help understand the language better.

What Is Execution Context?

As your program continues to run, the statements being executed exist alongside
something called an execution context. Note that the execution context is
pointed to by this keyword in each scope. Not only function-scope either. Block-
scope also carries with it a link to execution context via this keyword.

This often creates confusion, because in JavaScript the this keyword is also used
as a reference to an instance of an object in class definitions, so that we can access

261

its member properties and members.

But things become clear if we understand that execution context is represented
by an instance of an object. It is just not used to access its properties or methods.
Instead, it establishes a link between sections of code flow across multiple scopes.

Root Execution Context

When your program opens in a browser, an instance of a window object is created
automatically. This window object becomes the root execution context, because
it’s the first object instantiated by the browser’s JavaScript engine itself. The
window object is the execution context of global scope – they refer to the same
thing. The window object is an instance of Window class.

So how does it work?

If you call a function from global scope, the this keyword inside the function’s
scope will point to window object – the context from which the function was
called. The context was carried over into the function’s scope.

It’s like a link was established from current execution context to the previous one.

The execution context is something that is carried over from one scope to another,
during code execution flow throughout lifetime of your program. You can think of
it as a tree branch that extends into another scope from the root window object.

In the remaining sections of this chapter we will take a look at one possible inter-
pretation of execution context and the call stack.

22.2 Execution Context In Code

There is a difference between the logic of call stack and execution contexts and
how it manifests itself to the programmer. Obviously, being aware of the call stack
isn’t required when writing code. In JavaScript, the closest you will get to working
with execution contexts is via the this keyword.

Execution context is held by this keyword in each scope. The name context
suggests that it can change. This is true. The this keyword in each scope may
change or point to another new object in various situations.

262

But where does it all begin?

22.2.1 Window / Global Scope

When the window object is created, we get a handful of things happening under the
hood. A new lexical environment is created: it contains variable environment
for that scope – a place in memory for storing your local variables. Around this
time the first ever this binding takes place.

Figure 22.6: A new execution context is created when main window object is
instantiated. The this keyword points to the window object.

In global scope this keyword points to window object.

22.2.2 The Call Stack

The call stack keeps track of function calls. If you call a function from context of
the global scope, a new entry will be placed ”on top” of the current context. The
newly created stack will inherit execution context from the previous environment.

To visualize this, let’s take a look at this diagram:

263

Figure 22.7: Binding of this object across execution contexts on the call stack.
A new stack is created when function is called. This new context is logically placed
”on top” of the previous object on the call stack.

Call Stack & Execution Context Chain

Figure 22.8: As more functions that depend on each other are called from within
other functions, the stack grows.

264

As you can see the context carries over to the newly created stack and remains
accessible via the this keyword. This process repeats while maintaining a chain of
execution contexts all the way up to the currently executing context:

Figure 22.9: Calling multiple functions from within each other’s scope will build a
tower of function calls on the call stack. Note that this would happen only one at
a time for each function if all functions were called from global scope context.

Note that each function carries with it its own execution context EC0 – EC3.

There is always one current executing context. This is the context on the very top
of the stack. While all of the previous stacks remain below, until execution returns
from the current context (function ran it’s course and returned, so JavaScript
removes the context from memory and we no longer need it...)

265

After the function is finished executing the stack is removed from the top and
the code flow returns to the remaining previous / uppermost execution context.
Contexts are constantly pushed and popped from the call stack.

Stacking only occurs if you call a function from another function. It won’t happen
if all functions are executed consequently from the same execution context.

In which case... you will have one function pushed to the stack, popped from the
stack, and then the next function will be pushed onto the empty stack again...
and so on.

22.2.3 .call(), .bind(), .apply()

These three functions can be used to call a function and choose what this keyword
should point to within the scope of that function, overriding its default behavior.

266

22.2.4 Stack Overflow

When you pour your favorite soda into a tall glass, it will lose its carbonation and
given enough amount and pace it will fizz over the rim.

You can think of stack overflow in a similar way. The glass is the call stack’s
memory address space. The foam above rim is memory that could not be allocated.

Figure 22.10: Every time a function is called, new context is created in memory.
But memory is not infinite. Stack Overflow occurs when the memory required
to build the call stack exceeds the address space allocated for the stack. This
amount is determined and managed internally by the browser.

267

268

Index

...rest, 87, 89, 92

...spread, 87, 93, 96

.appendChild, 179

.apply, 266

.bind, 266

.call, 266

.readyState, 13

adding external modules, 15
adding HTML elements to DOM,

179
anonymous functions, 151
appendChild, 179
arithmetic addition operator, 58
arithmetic operations, 51
arithmetic operators, 79
arity, 107
array methods, 190
Array.every, 130
Array.filter, 131
Array.flat, 136
Array.flatMap, 136
Array.forEach, 129
Array.map, 132, 163
Array.reduce, 132
Array.some, 131
arrays, 127

arrow function anatomy, 168
arrow functions, 165
arrow functions as events, 167
assignment operator, 58, 81
async, 247
async await, 247
async await and try-catch, 250
async basics, 247
await, 247, 249
Axios, 245

backtick quote, 38
beautiful closure, 104
bigint, 35
bitwise operators, 83
block scope, 62
boolean, 33
break, 115
browser events, 223
built-in events, 223
Burner, 207, 215

call stack, 259, 263, 264
Callback Hell, 238
class, 204, 209
class keyword, 204
class scope, 75
closure, 72, 99, 100, 104

269

coercion, 47
coercion example, 48
compare arrays, 144
compare objects, 145
comparing non-numeric string to

number, 55
comparing numeric string to

number, 54
comparing objects, 142
comparing string to number, 54
comparison operator, 82
console, 7
console copy(obj), 7
console.clear, 10
console.dir, 8
console.error, 9
console.time, 9
console.timeEnd, 9
const and arrays, 76
const and object literals, 76
constructing objects, 184
constructor, 44, 193, 197
constructor function, 197, 201
constructor functions, 184
constructor property, 193
constructors, 184
constructors and type coercion, 49
continue, 115
convert console object to JSON, 7
create instance of an object, 203
creating HTML elements

dynamically, 177
creating objects, 199
css, 178
currying, 107
CustomEvent Object, 227

delete operator, 85
destructure, 94
destructuring assignment, 94
dispatchEvent, 225
DOM and media, 13
DOMContentLoaded, 12
dynamic import, 17
dynamic typing, 22

evaluating, 27
event anatomy, 228
event bubbling, 224
event capture, 224
event loop, 255
Event object, 224
events, 223
executing methods on primitives, 46
execution context, 261, 264
export, 16
exporting multiple definitions, 16
expressions, 29
extending objects, 192
external modules, 15
external script, 14

Fetch API, 246
Fetch POST, 246
FoodFactory, 206, 210
for-loop, 112
for-loop and let scope, 113
for-loop length, 114
for-loop: break, 115
for-loop: break condition, 116
for-loop: break to label, 117
for-loop: continue, 115
for-loop: nested, 114
for...in, 123

270

for...of and arrays, 120
for...of and generators, 118
for...of and objects, 121
for...of and strings, 120
for...of loop, 118
Fridge, 211
function, 149, 194
function anatomy, 150
function arity, 107
function assignments, 151
function constructor, 197, 201
function constructors, 184
function hoisting, 65
function parameters, 153
function purity, 134
function scope, 62
functions, 149

generator, 118, 251
generator errors, 253
generators, 251
getElementById, 179
global scope, 62, 263
global symbol registry, 42

higher-order functions, 157
hoisting functions, 65
hoisting variables, 63
HTTP, 235
HTTP requests, 235

import, 15, 16
importing multiple definitions, 16
in operator, 85
including external script, 14
incrementing numbers, 113
infinite for-loop, 112

Ingredient, 210
ingredient, 205
instance, 44
instantiating objects, 44, 203
iterators, 160

l-value, 58
literal values, 19
literals, 19
logical operators, 82
loops, 109

map(), 161, 163
merging arrays, 97
method chaining, 46
modules, 15
mouse, 230
mouse coordinates, 230
mouse event class, 231
mouse position, 230
multiple operators, 53
multiple statements in for-loops, 113

nested for-loop, 114
network, 235
new, 203
new keyword, 203
new operator, 203
null, 33, 59
number, 34
number arithmetics, 51

object comparison, 142
object instance, 44
object literal, 187, 195
object oriented programming, 205,

219

271

object property access, 46
Object.create, 199
OOP, 205, 219
operator associativity, 56
operator precedence, 53, 56
operators, 79
overriding browser events, 230

parent objects, 192
parenthesis, 46
passing values by reference, 23
polymorphic oven, 216
polymorphism, 208, 216
primitive types, 31
primitives, 31
print object in console, 8, 10
program entry point, 11
Promise, 239
Promise anatomy, 244
Promise.all, 242
Promise.catch, 240
Promise.finally, 240
Promise.reject, 241
Promise.resolve, 239
Promise.then, 240
prototype, 185, 187, 195, 198
prototype chain, 189
prototype link, 188
prototype method look-up, 190
purity, 134

querySelector, 179

r-value, 58
Range, 216
reducer, 133
references, 23

regex, 138
regular expression, 138
removeEventListener, 226
requests, 235
rest, 87
rest properties, 87

safeguarding function parameters,
155

scope, 61
scope visibility, 70
script type module, 15
setInterval, 229
setTimeout, 229
setting css style, 178
spread, 87
spread properties, 89
stack overflow, 267
statement evaluation, 27
statements, 27
strict mode, 17
string, 37
string arithmetics, 51
string assignment operator, 81
string to number comparison, 54
String.matchAll, 137
symbol, 40
synthetic events, 224

template literal, 38
template string, 38
ternary operator, 85
this, 156
this keyword, 156
type checking, 154
type coercion, 47, 50
typeof, 36, 84

272

undefined, 33, 59
using constructors, 184

variable case-sensitivity, 62
variable definitions, 62
variable hoisting, 63
variable reference, 23
variable types, 70

variables, 21
Vessel, 206, 213

while loop, 123
window, 263
window.onload, 14

yield, 252

273

	JavaScript Grammar
	0.1 Foreword
	1 Presentation Format
	1.1 Creative Communication
	1.1.1 Theory
	1.1.2 Practical Examples
	1.1.3 Source Code
	1.1.4 Color-Coded Diagrams
	1.1.5 Dos and Dont's

	2 Chrome Console
	2.0.1 Beyond Console Log
	2.0.2 console.dir
	2.0.3 console.error
	2.0.4 console.time() and console.timeEnd()
	2.0.5 console.clear

	3 Welcome To JavaScript
	3.1 Entry Point
	3.1.1 Dos and Dont's
	3.1.2 [height=1cm,valign=m]D:/Golden/Latex/javascriptgrammar-I/es10 Dynamic Import

	3.2 Strict Mode
	3.3 Literal Values
	3.4 Variables
	3.5 Passing Values By Reference
	3.6 Scope Quirks

	4 Statements
	4.0.1 Evaluating Statements
	4.0.2 Expressions

	5 Primitive Types
	5.0.1 boolean
	5.0.2 null
	5.0.3 undefined
	5.0.4 number
	5.0.5 [height=1cm,valign=m]D:/Golden/Latex/javascriptgrammar-I/es10 bigint
	5.0.6 typeof
	5.0.7 string
	5.0.8 [height=1cm,valign=m]D:/Golden/Latex/javascriptgrammar-I/es6 Template Strings
	5.0.9 [height=1cm,valign=m]D:/Golden/Latex/javascriptgrammar-I/es6 Symbol
	5.0.10 Executing Methods On Primitive Types

	6 Type Coercion Madness
	6.0.1 Examples of Type Coercion
	6.0.2 Adding Multiple Values
	6.0.3 Operator Precedence
	6.0.4 String To Number Comparison
	6.0.5 Operator Precedence & Associativity Table
	6.0.6 L-value and R-value
	6.0.7 null vs undefined

	7 Scope
	7.0.1 Scope
	7.1 Variable Definitions
	7.1.1 Variable Types
	7.1.2 Scope Visibility Differences
	7.1.3 [height=1cm,valign=m]D:/Golden/Latex/javascriptgrammar-I/es6 const
	7.1.4 const and Arrays
	7.1.5 const and Object Literals
	7.1.6 Dos and Dont's

	8 Operators
	8.0.1 Arithmetic
	8.0.2 Assignment
	8.0.3 String
	8.0.4 Comparison
	8.0.5 Logical
	8.0.6 Bitwise
	8.0.7 typeof
	8.0.8 Ternary (?:)
	8.0.9 delete
	8.0.10 in

	9 ...rest and ...spread
	9.0.1 Rest Properties
	9.0.2 Spread Properties
	9.0.3 ...rest and ...spread
	9.1 Destructuring Assignment

	10 Closure
	10.0.1 Arity
	10.0.2 Currying

	11 Loops
	11.0.1 Types of loops in JavaScript
	11.1 for loops
	11.1.1 0-index based counter
	11.1.2 The Infinite for Loop
	11.1.3 Multiple Statements

	11.2 for...of Loop
	11.2.1 for...of and Generators
	11.2.2 for...of and Strings
	11.2.3 for...of and Arrays
	11.2.4 for...of and Objects
	11.2.5 for...of loops and objects converted to iterables

	11.3 for...in Loops
	11.4 While Loops
	11.4.1 While and continue

	12 Arrays
	12.0.1 [height=1cm,valign=m]D:/Golden/Latex/javascriptgrammar-I/es10 Array.prototype.sort()
	12.0.2 Array.forEach
	12.0.3 Array.every
	12.0.4 Array.some
	12.0.5 Array.filter
	12.0.6 Array.map
	12.0.7 Array.reduce
	12.0.8 Practical Reducer Ideas
	12.0.9 Dos and Dont's
	12.0.10 [height=1cm,valign=m]D:/Golden/Latex/javascriptgrammar-I/es10 Array.flat()
	12.0.11 [height=1cm,valign=m]D:/Golden/Latex/javascriptgrammar-I/es10 Array.flatMap()
	12.0.12 [height=1cm,valign=m]D:/Golden/Latex/javascriptgrammar-I/es10 String.prototype.matchAll()
	12.0.13 Dos and Dont's
	12.0.14 Comparing Two Objects
	12.0.15 Writing arrcmp
	12.0.16 Improving objcmp
	12.0.17 Testing objcmp on a more complex object

	13 Functions
	13.1 Functions
	13.1.1 Function Anatomy
	13.1.2 Anonymous Functions
	13.1.3 Assigning Functions To Variables

	13.2 Origin of this keyword

	14 Higher-order Functions
	14.0.1 Theory
	14.0.2 Definition
	14.0.3 Abstract
	14.0.4 Iterators
	14.0.5 Dos and Dont's

	15 Arrow Functions
	15.0.1 Arrow Function Anatomy

	16 Creating HTML Elements Dynamically
	16.0.1 Setting CSS Style
	16.0.2 Adding Elements To DOM with .appendChild method
	16.0.3 Writing A Function To Create Elements
	16.0.4 Creating objects using function constructors

	17 Prototype
	17.0.1 Prototype
	17.0.2 Prototype on Object Literal
	17.0.3 Prototype Link
	17.0.4 Prototype Chain
	17.0.5 Method look-up
	17.0.6 Array methods
	17.1 Parenting
	17.1.1 Extending Your Own Objects
	17.1.2 constructor property
	17.1.3 Function

	17.2 Prototype In Practice
	17.2.1 Object Literal
	17.2.2 Using Function Constructor
	17.2.3 Prototype
	17.2.4 Creating objects using Object.create
	17.2.5 Back To The Future
	17.2.6 Constructor Function
	17.2.7 Along came new operator
	17.2.8 [height=1cm,valign=m]D:/Golden/Latex/javascriptgrammar-I/es6 The class keyword

	18 Object Oriented Programming
	18.1 Ingredient
	18.2 FoodFactory
	18.3 Vessel
	18.4 Burner
	18.5 Range Type and The Polymorphic Oven
	18.6 Class Definitions
	18.6.1 print.js
	18.6.2 Ingredient
	18.6.3 FoodFactory
	18.6.4 Fridge
	18.6.5 convert_energy_to_heat
	18.6.6 Vessel
	18.6.7 Burner
	18.6.8 Range
	18.6.9 Putting It All Together

	19 Events
	19.0.1 Browser Events
	19.0.2 Synthetic Events
	19.0.3 Event Anatomy
	19.0.4 setTimeout
	19.0.5 setInterval
	19.0.6 Intercepting Browser Events
	19.0.7 Display Mouse Position
	19.0.8 Universal Mouse Event Class

	20 Network Requests
	20.0.1 Callback Hell
	20.0.2 [height=1cm,valign=m]D:/Golden/Latex/javascriptgrammar-I/es6 Promises
	20.0.3 Promise.resolve
	20.0.4 .then
	20.0.5 .catch
	20.0.6 .finally
	20.0.7 Promise.reject
	20.0.8 Putting It All Together
	20.0.9 Promise.all
	20.0.10 Promise Anatomy
	20.0.11 Final Words
	20.0.12 Axios
	20.0.13 [height=1cm,valign=m]D:/Golden/Latex/javascriptgrammar-I/es6 Fetch API
	20.0.14 Fetch POST Payload
	20.1 [height=1cm,valign=m]D:/Golden/Latex/javascriptgrammar-I/es6 async / await
	20.1.1 await
	20.1.2 async / await with try-catch
	20.1.3 Final Words

	20.2 [height=1cm,valign=m]D:/Golden/Latex/javascriptgrammar-I/es6 Generators
	20.2.1 yield
	20.2.2 Catching Errors

	21 Event Loop
	22 Call Stack
	22.1 Execution Context
	22.2 Execution Context In Code
	22.2.1 Window / Global Scope
	22.2.2 The Call Stack
	22.2.3 .call(), .bind(), .apply()
	22.2.4 Stack Overflow

