JAVASCRIPT
CIRANMMALR

JAVASCRIPT MRANMNMAR

JavaScript Grammar — Edition | — March 23, 2019

Title: JavaScript Grammar

Edition: | — March 23, 2019
Genre: Software Development
Publisher: Learning Curve Books
Imprint: Independently published
ISBN: 9781091212169

Author: Greg Sidelnikov (greg.sidelnikov@gmail.com)

Editors, volunteers, contributors: Grace Neufeld.

Primary purpose of Learning Curve Books publishing company is
to provide effective education for web designers, software engineers and all readers
who are interested in being edified in the area of web development.

This edition of JavaScript Grammar was created to speed up the learning process
of JavaScript — the language for programming websites, applications and robots!

For questions and comments about the book you may contact the author or send
an email directly to our office at the email address mentioned below.

Special Offers & Discounts Available
Schools, libraries and educational organizations may qualify for special prices.
Get in touch with our distribution department at hello@learningcurvebook.net

Learning Curve Books

Learning Curve Books is a registered trademark of Learning Curve Books, LLC.

License is required to distribute this volume in any form regardless of format or
price. All graphics and content is copyright of Learning Curve Books, LLC. unless
where otherwise stated.

(©2018 - 2019 Learning Curve Books, LLC.

JavaScript Grammar

0.1 Foreword 1

1 Presentation Format 3
1.1 Creative Communication 3
1.1.1 Theory 4

1.1.2 Practical Examples 4

1.1.3 Source Code 4

1.1.4 Color-Coded Diagrams 4

1.1.5 Dosand Dont's 6

2 Chrome Console 7
2.01 Beyond ConsoleLog 7

2.0.2 consoledir 8

2.0.3 consoleerror 9

2.0.4 console.time() and console.timeEnd() 9

2.05 consoleclearo 10

3 Welcome To JavaScript 11
3.1 EntryPoint. 11

3.1.1 DosandDont's 12

3.1.2 Dynamic Import
32 StrictMode
3.3 Literal Values.
34 Variables
3.5 Passing Values By Reference
3.6 Scope Quirks
4 Statements
4.0.1 Evaluating Statements
402 Expressions
5 Primitive Types
5.0.1 boolean.
502 null ..o
5,03 undefined.
5,04 number
5.05 bigint
5.0.6 typeof
507 string
5.0.8 Template Strings L.
5.0.9 Symbol
5.0.10 Executing Methods On Primitive Types

6 Type Coercion Madness

6.0.1

Examples of Type Coercion

27
27
29

31
33
33
33
34

35

36
37

38

40
46

47

6.0.2 Adding Multiple Values 53
6.0.3 Operator Precedence 53
6.0.4 String To Number Comparison 54
6.0.5 Operator Precedence & Associativity Table 56
6.0.6 L-valueand R-value 58
6.0.7 null vsundefined 59

7 Scope 61
7.0.1 Scope 62

7.1 Variable Definitions L. 62
7.1.1 Variable Types 70
7.1.2 Scope Visibility Differences 70
7.1.3 const 76
7.14 constand Arrays 76
7.1.5 const and Object Literals 76
716 DosandDont's 77

8 Operators 79
8.0.1 Arithmetic 79
8.0.2 Assignment. 81
8.0.3 String 81
8.0.4 Comparison 82
8.05 Logical 82
8.06 Bitwise 83
8.0.7 typeof 84
8.0.8 Ternary (1) 85

9

8.0.9 delete.
8.0.10 in

...rest and ...spread
9.0.1 Rest Properties.
9.0.2 Spread Properties
9.03 ..restand ..spread
9.1 Destructuring Assignment L

10 Closure

10.0.1 Arity
10.0.2 Currying

11 Loops

11.0.1 Types of loops in JavaScript
11.1 forloops
11.1.1 O-index based counter
11.1.2 The Infinite for Loop
11.1.3 Multiple Statements
11.2 for..of Loop
11.2.1 for...of and Generators L.
11.2.2 for...of and Strings
11.2.3 for..of and Arrays
11.2.4 for...of and Objects
11.2.5 for...of loops and objects converted to iterables
11.3 for...inLoops
11.4 While Loops

87
87
89
89
94

99
107
107

11.4.1 While and continue 124

12 Arrays 127
12.0.1 Array.prototype.sort() 127

12.0.2 ArrayforEach 129

12.0.3 Arrayevery 130

12.0.4 Array.some 131

12.0.5 Arrayfiltero 131

12.0.6 Array.map 132

12.0.7 Array.reduce L 132

12.0.8 Practical ReducerIdeas 133

12.09 Dosand Dont's 134

12.0.10 Arrayflat() 136

12.0.11 ArrayflatMap() 136

12.0.12 String.prototype.matchAll() 137
12.0.13Dos and Dont's 141

12.0.14 Comparing Two Objects 142
12.0.15Writing arrcmp 144

12.0.16 Improving objcmp 145

12.0.17 Testing objcmp on a more complex object 146

13 Functions 149
13.1 Functions L 149

13.1.1 Function Anatomy 150

13.1.2 Anonymous Functions

13.1.3 Assigning Functions To Variables

13.2 Origin of this keyword

14 Higher-order Functions

14.0.1
14.0.2
14.0.3

Theory
Definition

Abstract

14.0.4 lteratorso

14.0.5

Dos and Dont's

15 Arrow Functions

15.0.1

Arrow Function Anatomy

16 Creating HTML Elements Dynamically

16.0.1
16.0.2
16.0.3
16.0.4

17 Prototype
17.0.1
17.0.2
17.0.3
17.0.4
17.0.5
17.0.6

Setting CSS Style
Adding Elements To DOM with .appendChild method .
Writing A Function To Create Elements.

Creating objects using function constructors

Prototype
Prototype on Object Literal
Prototype Link
Prototype Chain
Method look-up
Array methods

157
157
159
159
160
164

165
168

177
178
179
180
184

17.1 Parenting 192
17.1.1 Extending Your Own Objects 192
17.1.2 constructor property 193
17.1.3 Function 194

17.2 Prototype In Practice 195
17.2.1 Object Literal 195
17.2.2 Using Function Constructor 197
17.2.3 Prototype 198
17.2.4 Creating objects using Object.create 199
17.2.5 Back To The Future 200
17.2.6 Constructor Function 201
17.2.7 Along came new operator 203
17.2.8 The class keyword 204

18 Object Oriented Programming 205

18.1 Ingredient 205

18.2 FoodFactory 206

18.3 Vessel 206

18.4 Burner L 207

18.5 Range Type and The Polymorphic Oven. 208

18.6 Class Definitions 209
18.6.1 printjs 209
18.6.2 Ingredient 210
18.6.3 FoodFactory 210

18.6.4 Fridge 211

18.6.5 convert_energy to_heat. 212

18.6.6 Vessel 213
18.6.7 Burner 215
18.6.8 Range 216
18.6.9 Putting It All Together 219
19 Events 223
19.0.1 Browser Eventso 223
19.0.2 Synthetic Events 224
19.0.3 Event Anatomyo 228
19.0.4 setTimeout 229
19.0.5 setInterval 229
19.0.6 Intercepting Browser Events 230
19.0.7 Display Mouse Position 230
19.0.8 Universal Mouse Event Class 231
20 Network Requests 235
20.0.1 Callback Hell 238
20.0.2 Promises 239
20.0.3 Promise.resolveo 239
20.04 then 240
20.05 .catch 240
20.0.6 finally 240
20.0.7 Promise.reject L 241
20.0.8 Putting It All Together 241

20.0.9 Promiseall 242

20.0.10 Promise Anatomy 244

20.0.11Final Words 244
20.0.12AXI0S . . . 245

20.1 Fetch APl 246
20.1.1 Fetch POST Payload 246

20.2 async /await 247
20.2.1 awalt 249

20.2.2 async / await with try-catch 250

20.2.3 Final Words 251

20.3 Generators 252
20.3.1 yield 252

20.3.2 Catching Errors 253

21 Event Loop 255
22 Call Stack 259
22.1 Execution Context 261
22.2 Execution Context In Code 262
22.2.1 Window / Global Scope 263

2222 The Call Stack 263

22.2.3 .call(), .bind(), .apply() 266

2224 Stack Overflow 267

0.1 Foreword

We often think of the word " feature” as something that belongs to software prod-
ucts and services. Modern apps such as Instagram and Twitter have a " Follow”
feature, for example. Uploading a photo to your account is another feature!

But computer languages have features too. A function is a feature. A for loop
is a feature. So is the class keyword — all are computer language features.

In JavaScript some of these features are borrowed from other languages, while
many remain unique to its own design. Features such as this, class and const
may appear similar to their original C++ implementation, but in many cases they
are used in a completely unique way to JavaScript.

JavaScript is an evolving language. When EcmaScript 6 came out in June 2015 the
language experienced a Cambrian explosion of new features that radically changed
how JavaScript code should be written.

New features like ...rest and ...spread syntax, arrow functions, template strings,
object destructuring are commonplace in modern JavaScript code. But just a
few years ago, even seasoned JavaScript developers with over a decade experience
with the language couldn’t conceive of such concepts.

Functional Programming started to creep into JavaScript community seemingly at
the speed of light and higher-order functions (.map, .filter, .reduce) tied to Array
methods, that remained dormant for many years, have gained increased popularity.

But JavaScript is a multi-paradigm language. Programmers who come from tra-
ditional Object Oriented Programming background will find themselves at home
after induction of the class keyword and a separate constructor function that
provides an alternative to the classic JavaScript object-function constructors.

The ES6 specification triggered a whole new breed of coders who have developed
more respect for a language that once was used to write primitive DOM scripts.

JavaScript engines that run in browsers (Chrome browser’s V8, for example) have
matured and JavaScript is no longer looked at as a simple scripting language.

It's a whole new era of JavaScript development. Today, you may often stumble
upon a video titled Build a robot with JavaScript on YouTube. It is even
possible to build desktop applications for Windows 10 almost entirely in JavaScript.

JavaScript frameworks and libraries like React and Vue abstract away some of
the classic JavaScript principles, making it quicker to build modular applications.

But this often comes at the expense of never having to understand vanilla JavaScript
at the beginner level — its common grammar.

JavaScript Grammar was written to solve this problem by using carefully chosen
subjects that, hopefully, match a natural learning experience. Content of this book
will try to remain faithful to dynamic nature of JavaScript specification.

Finally, it is hoped that this book will encourage the reader to take the next step
in the direction of more advanced subjects in the future.

Chapter 1

Presentation Format

This book was structured with continuity in mind: it is meant to be read from
first to last page in a consecutive order. However, it can also be used as a desk
reference for looking up isolated examples when you need them.

JavaScript Grammar is not a complete JavaScript reference or manual. But,
this is probably a good thing. The subjects were reduced to only what's important
in modern-day JavaScript environment.

Namely: imports, classes, constructors, key principles behind functional program-
ming, including many features ranging from ES5 - ES10 are covered in this book.

The distinction between "ES" specifications has become less relevant. All of it is
JavaScript. But just to give the reader a bit of perspective...

Sometimes you will see labels like this one.

This simply means that this feature was added to JavaScript as part of the Ec-
maScript's ES10 specification.

1.1 Creative Communication

Some of JavaScript is easy, some of it is difficult. Not everything can be explained
by source code alone. Some things are based on intangible ideas or principles.

3

Throughout this tutorial book you will come across many creative communication
devices, designed to make the learning process a bit easier and perhaps more fun.

One example of that is color-coded diagrams.

1.1.1 Theory

Not all subjects require extensive theory. On the other hand, some things won't
make any sense without it. Additional discussion will be included, where it becomes
absolutely necessary, in order to fully understand a particular concept.

1.1.2 Practical Examples

A practical example follows the theoretical discussion, so we can actually see the
implementation. It will usually be explained by a source code listing.

1.1.3 Source Code

Source code listings will be provided to cement the foundational principles from
preceding text.

054| // Create (instantiate) a sparrow from class Bird
055| let sparrow = new Bird("sparrow", "gray");

056 | sparrow.fly();

057/| sparrow.walk() ;

058 | sparrow.lay_egg();

059| sparrow.talk(); // Error, only Parrot can talk

This is an example of instantiating sparrow object from Bird class and using
some of its methods.

1.1.4 Color-Coded Diagrams

A significant amount of effort went into creating diagrams describing fundamental
ideas behind JavaScript. They were designed for communicative value, hopefully

4

they will speed up the learning process in places where hard to grasp abstract ideas
need to be explained visually.

There are two types of diagrams in this book: abstract ideas and source code
close ins.

Abstract ideas

Sometimes there isn't a way to explain an abstract idea or its structure without a
diagram. In places where that's the case, a diagram will be shown.

f Function
Class.constructor ;

Figure 1.1: Class constructor is an object-function of type Function.

Here is another diagram visualizing anatomy of a JavaScript function:

arguments
name C7 [] {} default parameter
function update (a,p,c, "hi') parameters
{ 37
;1
s {}
5 hit
5 array-like object of arguments [7,[],{},"hi"]
this; context: window or object instance
return true; return value

Figure 1.2: JavaScript function anatomy.

Code close ins

Most of the source code is accompanied by source code listings.

But when we need to close in on a particular important subject, a slightly larger
diagram with source code and additional color-coded highlighting will be shown.
For example, here is exploration of an anonymous function when used in the context
of a event callback function:

setTimeout (function() {
console.log("Print something in 1 second.");
console. log(arguments) ;

}, 1000);

Figure 1.3: Anonymous function used as a setTimeout event callback.

In this case the source code will be missing line numbers because it's not important.

Content

We won't spend much book space or your time on countless listings of functions
and available methods on every single object. This type of information can be
easily looked up and practiced online on demand from Mozilla's MDN web docs,
W3Schools and StackOverflow.

Much of content of this book is tailored to modern JavaScript development, which
leans toward >= EcmaScript6 specification, functional programming: the use of
higher-order Array functions, arrow functions and understanding execution context.

1.1.5 Dos and Dont’s

An occasional Dos and Donts section will appear with insightful tips.

Chapter 2

Chrome Console

2.0.1 Beyond Console Log

Many programmers only know Chrome's console.log but the console API con-
tains few other methods that have practical use, especially when time is of essence.

copy(obj) function
Copying JSON representation of an existing object to your copy buffer:

let x = { property: 1, propl: 2, method: function(){} };

copy(x);
> |

Now the JSON is in your copy-paste buffer, you can paste it into any text editor.

In this example x is a simple self-created object. But imagine a situation where a
much more complex object is returned from a database API.

Note: Only JSON is returned, this means that methods will not make it to the
copy buffer. (JSON string format does not support methods, only properties.)

7

2.0.2 console.dir

If you want to take a look at all object’s properties and methods, you can print it
out directly into the console using console.dir method:

> console.dir(x);

v Object
» method: # ()
propl: 2
property: 1

> proto : Object
> |

What's fantastic is that you can even output DOM elements:

> console.dir(document.body);

v body
alLink:
accessKey:
assignedSlot: null

> attributeStyleMap: StylePropertyMap {size: @}
b attributes: NamedNodeMap {length: @}
autocapitalize: ""
background: ""
baseURI: "http://localhost/experiments/javascript.html”
bgColor: ""

2.0.3 console.error

001| let fuel = 99;

002 | function launch_rocket() {

003 function warning_msg() {

004 console.error ("Not enough fuel.");
005 }

006 if (fuel >= 100) {

007 // looks like everything's ok
008 } else

009 warning_msg();

010| }

011

012| launch_rocket();

The great thing about console.error is that it also provides the stack trace:

© vNot enough fuel.
warning_msg @ javascript-x.html:9

launch_rocket @ javascript-x.html:14

(anonymous) @ javascript-x.html:17

> |

2.0.4 console.time() and console.timeEnd()

You can track the amount of time between function calls. This can be helpful
when optimizing code:

001| console.time() ;

002| let arr = new Array(10000);

003| for (let i = ©; i < arr.length; i++) {
004 arr[i] = new Object();

005| }

006 | console.timeEnd() ;

Console output:

default: 2.51708984375ms
> |

2.0.5 console.clear

Console was cleared
undefined
>

Printing Objects

In JavaScript all objects have .toString() method. When providing an object
to console.log(value) it can print it either as an object, or as a string.

001| let obj = {};

002 | console.log(obj); // obj{}
003 | console.log("object = " + obj); // [object Object]
004 | console.log(${obj}); // [object Object]

10

Chapter 3

Welcome To JavaScript

3.1 Entry Point

Every computer program has an entry point.

You can start writing your code directly into <script> tags. But this means it
will be executed instantly and simultaneously as the script is being downloaded
into the browser, without concern for DOM or other media.

This can create a problem because your code might be accessing DOM elements
before they are fully downloaded from the server.

To remedy the situation, you may want to wait until the DOM tree is fully available.

11

DOMContentLoaded

To wait on the DOM event, add an event listener to the document object. The
name of the event is DOMContentLoaded.

001| <html>

002 <head>

003 <title>DOM Loaded.</title>

004 <script type = '"text/javascript'">

005 function load() {

006 console.log("DOM Loaded.");

007 }

008 document.addEventListener ("DOMContentLoaded", load);
009 </script>

010 </head>
011 <body></body>
012/| </html>

Figure 3.1: Here the entry point is your own custom function load(). This is a
good place for initializing your application objects.

You can rename the load function to start, ready or initialize — it doesn't matter.

What matters is that at this entry point we're 100% guaranteed that all DOM
elements have been successfully loaded into memory and trying to access them
with JavaScript will not produce an error.

3.1.1 Dos and Dont’s

Do not write your code just in <script> tags, without entry point function.
Do use the entry point to initialize the default state of your data and objects.

Do make your program entry point either DOMContentLoaded, readyState or
the native window.onload method for waiting on media (see next,) depending on
whether you need to wait for just the DOM or the rest of media.

12

.readyState

For added safety you might also check the value of readyState property before
attaching the DOMContentLoaded event:

001 | <html>

002 <head>

003 <title>DOM Really Loaded.</title>

004 <script type = "text/javascript">

005 function load() {

006 console.log("DOM Loaded.™);

007 }

008

009 if (document.readyState == "loading") {
010 document.addEventListener ("DOMContentlLoaded", load);
011 } else {

012 load();

013 }

014 </script>

015 </head>
016 <body></body>
017/| </html>

Figure 3.2: Check document.readyState

DOM vs Media

We've just created a safe place for initializing our application. But because DOM
is simply a tree-like structure of all HT ML elements on the page, it usually becomes
available before the rest of the media such as images and various embeds.

Even though <image src = "http://url" />isa DOM element, the URL con-
tent specified in image's src attribute might take more time to load.

To check if any non-DOM media content has finished downloading we can overload
the native window.onload event as shown in the following example.

13

window.onload

With window.onload method, you can wait until all images and similar media
have been fully downloaded:

001 | <html>

002 <head>

003 <title>Window Media Loaded.</title>

004 <script type = "text/javascript'">

005 window.onload = function() {

006 /* DOM and media (images, embeds) */
007 }

008 </script>

009 </head>
010 <body></body>
011 </html>

Including External Scripts

Let's say we have the following definitions in my-script. js file:

001 let variable = 1;
002 | function myfunction() { return 2; }

Then you can add them into your main application file as follows:

001| <html>

002 <head>

003 <title>Include External Script</title>
004 <script src = "my-script.js"></script>
005 <script type = "text/javascript">

006 let result = myfunction();

007 console.log(variable); // 1

008 console.log(result); // 2

009 </script>

010 </head>
011 <body></body>
012| </html>

Main JavaScript application file — index.html, for example

14

Import

Starting from ES6 we should use import (and export) keyword to import variables,
functions and classes from an external file.

Let's say we have a file mouse. js and it has following definition of a Mouse class.

001\export function Mouse() { this.x = 0; this.y = 0; }

In order to make a variable, object or a function available for export, the export
keyword must be prepended to its definition.

But that's not enough! The Mouse constructor function will be exported as long
as a matching import is available in main application file.

Not everything in a module will be exported. Some of the items will (and should)
remain private to it. Be sure to prepend export keyword to anything you want to
export from the file. This can be any named definition.

script type = "module”

In order to export the Mouse class and start using it in the application, we must
make sure the script tag's type attribute is changed to "module” (this is required.)

001/| <html>

002 <head>

003 <title>Import Module</title>

004 <script type = "module'">

005 import { Mouse } from "./mouse.js";
006 let mouse = new Mouse();

007 </script>

008 </head>
009 <body></body>
010/| </html>

Figure 3.3: Now we can safely access Mouse class, instantiate a new object from
it and access its properties and methods.

15

Importing And Exporting Multiple Definitions

It's uncommon for a complex program to import only one class, function or variable.

Here is an example of how to import multiple items from two imaginary files.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017

import { Mouse, Keyboard } from "./input.js";
import { add, subtract, divide, multiply } from "./math.js";

// Initialize mouse object and access mouse position

let mouse = new Mouse();
mouse.X; // 256
mouse.y; // 128
// Initialize Keyboard class and check if shift is pressed

let keyboard = new Keyboard();
keyboard.shiftIsPressed; // false

// Use math functions from math library file
add(2, 5); /] 7
subtract(10, 5); // 5
divide (10, 5); // 2
multiply(4, 2); // 8

The Mouse and Keyboard classes were imported together (separated by comma)
from input.js file. They were instantiated as separate objects then and their
properties were accessed to grab some data.

We've also imported some math functions add, subtract, divide and multiply
from math.js. The math library file source code is shown below. After defining 4
functions we can export multiple definitions as follows:

001
002
003
004
005
006
007
008

// A collection of math functions

function add(a,b) { return a + b; }
function subtract(a,b) { return a - b; }
function divide(a,b) { return a / b; }
function multiply(a,b) { return a * b; }

// Export multiple -items
export { add, subtract, divide, multiply }

Figure 3.4: Exporting multiple definitions from math. js

16

3.1.2 Dynamic Import

Imports can be assigned to a variable since EcmaScript 10 (may not be available
in your browser yet, at the time of this writing.)

001| element.addEventListener('click', async () => {

002 const module = await import('./api-scripts/kclick.js');
003 module.clickEvent();

004 });

3.2 Strict Mode

The strict mode is a feature available since ECMAScript 5 that allows you to place
your entire program, or an isolated scope, in a "strict” operating context. This
strict context prevents certain actions from being taken and throws an exception.

For example, in strict mode you cannot use undeclared variables. Without strict
mode, using an undeclared variable will automatically create that variable.

Without strict mode, certain statements might not generate an error at all — even
if they are not allowed — but you wouldn't know something was wrong.

00l |var variable = 1;
002
003 |delete variable; // false

Figure 3.5: You cannot use delete keyword to delete variables in JavaScript

Without strict mode on, code above will fail silently, variable will not be deleted,
and delete variable will return false but your program will continue to run.

But what will happen in strict mode?

17

001|"use strict";
002
003 |var variable

004
005|delete variable; // SyntaxError

= 1;
Figure 3.6: In this example strict mode is enabled for entire global scope.

© Uncaught SyntaxError: Delete of an
unqualified identifier in strict mode.

> |

Figure 3.7: In strict mode you will generally become aware of more errors. For
example, the line delete variable can be removed completely without having

any impact on the program.

Limiting " strict mode” To A Scope

The strict mode doesn’t have to be enabled globally. It is possible to isolate a
single block (or function) scope to strict mode:

001|// Limit strict mode to function scope
002| function my_strict_function() {

003 'use strict';

004 function inner () { console.log('Me too.'); }
005 return 'I am in strict mode. ' + dnner();
006}

Final Words

In a professional environment, it is common to have strict mode on, because it
can potentially prevent many bugs from happening and generally supports better
software practice.

When learning JavaScript for the first time, you might want to keep it off to avoid
encountering errors caused by something that requires advanced understanding.

18

3.3 Literal Values

The literal representation of a number can be the digit 1, 25, 100 and so on. A
string literal can be "some text";

You can combine literals using operators (+,-,/,*, etc.) to produce a single result.

For example, to perform a 5 + 2 operation, you will simply use the literal number
values 5 and 2:

001
002

// Add two numberic Lliterals to produce 7:
5 + 2; 7

Combine two strings to produce a single sentence:

001
002

// Add two strings to produce a sentence:
"Hello" + " there."; "Hello there."

Add two literal values of different types to produce a coerced value:

001
002

// Adding string to number to produce coerced value
"username” + 2574731; "username2574731"

There is a literal value for just about everything in JavaScript:

1; // numeric literal
"some text."; // string literal

[1; // array literal

{}; // object literal
true; // boolean literal
function() {}; // function is a value

There is an array literal []1 and object literal {}.

You can add {} + [] without breaking the program, but the results will not be
meaningful. These types of cases are usually non-existent.

Note that a JavaScript function can be used as a value. You can even pass them
into other functions as an argument. We don't usually refer to them as function
literals, however, but rather function expressions.

19

Each literal value usually has a constructor function associated with it.

value

1

3.14

some text.
»[]

> {}

true

f O {}

The typeof(value) function can be used to determine type of the literal value.

typeof

"number’
"number’
'string’
'object’
'object’
"boolean’
"function'’

constructor

Number ()
Number ()
String()
Array()
Object()
Boolean()

Function()

You can also use typeof as stand-alone keyword without parenthesis: typeof x.

For example typeof 1 will return string "number" and typeof {} will return string
"object". But "object” doesn’t mean its an object-literal — for example — typeof

new Number also returns "object" as does typeof new Array.

It's a bit unfortunate that there is no "array" (you will get "object" instead)
but there is a classic workaround. To check if a value is an array, first check if its
typeof returns "object", but also check for presence of length property on the

object — because it exists only on arrays.

Number(1) vs new Number(1)

You can instantiate a value using constructor function associated with the type of

that value. But using literal values is more common:

001|// Literal values

0021 + 2;

003|// Using Number function

004 |Number (1)

+ Number (2) ;

005|// Using Number object constructor
006 \lnew Number (1) + new Number (2) ;

007|// Combination
008|1 + Number(2) + new Number (4) ;

The new keyword will be explained toward end of this book.

20

//
//
//
/7

3.4 Variables

Value Placeholders

Variables are placeholder names for different types of values.

var Definition Assignment
let
const var number =

Figure 3.8: Variable declaration is definition 4 assignment.

Keywords for defining variables include: var, let and const: but they don't
determine variable's type, only how they can be used. We'll go over the rules in
more detail at a later time. Here are some examples:

001| var legacy = 1; // using legacy var keyword
002 | let number = 1; // assign a number

003| let string = "Hello."; // assign a string

004| let array = []; // assign an array literal
005| let object = {a:1}; // assign object literal
006| let json = {"a":1}; // assign JSON1 (object)
007| let json2 = ¢{"a":1}’; // assign JSON2 (string)
008| let boolean = true; // assign boolean

009| let inf = Infinity; // assign infinity (number)
010| let func = function(a) {return a};// assign a function

011| let arrow = (a) => { a }; // assign arrow function
012| let fp = a => a; // assign arrow expression
013| let n = new Number(1l); // assign number object

014| let o = new Object(); // assign blank object

Figure 3.9: Here are some of the most common assignments you will come across.

When you assign 1 to a variable name the type of that variable automatically
becomes "number” . If the value were a string, the variable type would be "string”.

21

Dynamic Typing

JavaScript is a dynamically-typed language. It means that variables created using
var or let keywords can be dynamically re-assigned to a value of another type at
some point later in your JavaScript program.

In statically-typed languages doing that would generate an error.
Definition Or Declaration?
In the previous diagram we looked at a JavaScript variable declaration.

Some will argue that the definition is the declaration. But this type of logic
comes from statically typed languages, of which JavaScript is not. In statically
typed languages the declaration determines the type of the variable — it's what
the compiler needs to allocate memory for the variable type (left hand side). But
JavaScript is a dynamically typed language — the variable type is determined by
the the type of value itself (right hand side).

Hence, the confusion. Is the left side the declaration, definition or both? These
types of details are more relevant in statically typed languages, but in JavaScript
(and other dynamically-typed languages) it might not make much sense.

22

3.5 Passing Values By Reference

Copying data from place to place is a common operation in computing. It is
natural to think that when we assign a value to a variable from another variable,
a copy is made.

But JavaScript assigns values by reference without actually making a copy of the
original value. Here is an example:

001 let x = { p: 1 }; // create new variable x

002 let y = x; // vy is a reference to x

003 x.p = 2; // change original value in x
004 console.log(y.p): // 2

Here we created variable x and assigned object literal {p: 1} to it.

This means that from now on the value of x.p will be equal 1.

A new variable called y was created and assigned x to it.

Now x has become a reference to y, not a copy.

From now on, any changes made to x will be also reflected in y.

This is why when we changed value of x.p to 2, y.p was also changed.

You can say that now y " points” to the original object assigned to x variable.

Only one copy of {p: 1} existed in computer memory all along from start to finish
of this code block. Multiple assignments are chained by reference:

001 let a= { p: 1 }; // create new variable a
002 let b:E: ; // b is a reference to a
003| let c="Db;
004 | let d>c;
005| let e\>\d;
006 | let f-="e€;
007|let g £;
008
009|a.p = 5; // change original value in a
010
011 console.log(g.p) ; // 5

%

Figure 3.10: A chain of references without a single copy of original value.

23

3.6 Scope Quirks

JavaScript has two known quirks when it comes to scope rules, that you might
want to know about to save debugging time later.

Quirk 1 — let and const inside function vs. global variable

A variable defined using let or const keywords inside a function cannot coexist
with global variable of the same name.

001|let a = "global a";
002|let b = "global b";
003

004 | function x(){
005 console.log("x(): global b

"+ b); // "global b"

006 console.log("x(): global a = " + a); // ReferenceError
007 let a = 1; // doesn't hoist

0o8|}

009

010/ x();

Figure 3.11: ReferenceError will happen if local variable a is defined inside the
function body using either let or const keywords.

The let keyword doesn’t hoist definitions, and we have a global variable a, so
logically, inside function x() variable a should be taken from global scope, before
it is defined later with let a = 1 but that's not what happens.

If variable a already exists inside a function (and it's defined using let or const
keywords) then using a, prior its definition within the function will produce Refer-
enceError, even if global variable a exists!

24

Quirk 2 — var latches onto window/this object, let and const don’t

In global scope this reference points to instance of window object / global context.

When variables are defined using var keyword they become attached to window
object, but variables defined using let (and const) are not.

001
002
003
004
005
006
007
008
009
010
011
012

console.

var ¢ =
let d

console.
console.
console.

console.
console.
console.

log(this === window); // window

"c"; // latches on to window ("this" in global scope)
"d"; // exists separately from "this"

log(c);
log(this.c);
log(window.c);

log(d);
log(this.d);
log(window.d) ;

//
/7
//

/]
/7
/7

IICH
IIC||
||C||

||d||

undefined
undefined

25

26

Chapter 4

Statements

4.0.1 Evaluating Statements

A statement is the smallest building block of a computer program. In this chapter
we will explore a few common cases.

Definitions made with var, let or const keywords return undefined because they
behave only as value assignments: the value is simply stored in the variable name:

001| let a = 1; // undefined

Figure 4.1: The assignments statement itself produces undefined, while the value
is stored in variable a.

If, however, the assigned variable a is used as a stand-alone statement afterwards,
it will produce value of 1:

002 a; // 1

Figure 4.2: A statement that produces a single value other than undefined can
be referred to as an expression.

27

Statements wusually produce a value. But when there isn't anything to return, a
statements will evaluate to undefined, which can be interpreted as "no value.”

Statement Evaluates to
001/ // undefined
002 1; // 1
003| "text"; // "text"
004| [1; // L]
005 {}; // undefined
006| let a = 1; // undefined
007 let b = []; // undefined
008| let ¢ = {}; // undefined
009| let d = new String("text"); // undefined
010| let e = new Number(125); // undefined
011 | new String("text"); // "text"
012| new Number (125); // 125
013| let f = function() { return 1 }; // undefined
014 f(); // 1
015| let o = (a, b) => a + b; // undefined
016 o(1l, 2); /] 3
017| function name() {} // undefined

Figure 4.3: An empty statement with semicolon evaluates to undefined. Any
statement that doesn’t produce a value will evaluate to undefined — variable
assignments (006-010) or function definitions (017), for example.

Some evaluation rules make sense, but special cases should probably be just mem-
orized. For example, what would it mean to evaluate an empty object literal?
According to JavaScript it should evaluate to undefined.

Yet, empty array brackets []1 (a close relative to empty object literal) evaluate to
an empty array: [], and not undefined.

28

4.0.2 Expressions
Here is an expression: 1 + 1 that produces the value of 2:
003/ 1 + 1; /] 2

Figure 4.4: Expressions don't have to be variable definitions. You can create them
by simply using some literal values in combination with operators.

There is another distinct types of an expression in JavaScript:

013 let f = function() { return 1 }; // undefined
014| f(); /) 1

Function £ () evaluates to value 1, because it returns 1. This is why f () is often
referred to as a function expression.

29

30

Chapter 5

Primitive Types

31

Primitive Types

JavaScript has 7 primitive types: null, undefined, number, bigint, string,
boolean and symbol. Primitives helps us work with simple values such as strings,
numbers and booleans. Let's take a look at some of their possible values:

type values constructor function
null null none

undefined undefined none

number 123 3.14 Number ()

bigint 123n 256n BigInt()

string "Hello" String()

boolean true false Boolean()

symbol none

Some of the primitives have a constructor function associated with it.

Here's a number of primitives assigned to several variable names:

001| let a = undefined; // undefined

002 let b = null; // null

003| let ¢ = 12; // integer number

004| let d = 4.13; // floating point number

005| let e = 100n; // big integer (values over 2%)
006 let f = "Hello."; // text string

007| let g = Symbol(); // create symbol

008 | console.log(typeof 8); // "symbol"

Numbers, strings and booleans are basic value units. You can write them out
in literal form: a number can be 123 or 3.14, a string can be "string", or
a template string: ‘I have {$number} apples.‘ (note the back-tick quotes,
which allow you to embed variables into the string dynamically.) A boolean can
only be either true or false. You can combine primitive types using operators,
pass them to functions or assign them as values to object properties.

Number(), Bigint(), String() and Boolean() are primitive constructor func-
tions. We'll explore constructor functions and classes at a proper time in the
book. First, let's briefly go over each primitive individually.

32

5.0.1 boolean

possible values

true false

The boolean primitive can be assigned either true or false value.

typeof constructor
"boolean" string new Boolean(value)

5.0.2 null

typeof constructor
"object" string none

Running typeof operator on null will say it's an "object”.

Some believe this is a bug in JavaScript because null is not an object since it
doesn’t have a constructor. And they are probably right...

5.0.3 undefined

typeof constructor

"undefined" string none

Undefined is a type of its own. It's not an object. Just a value JavaScript will use
when you named a variable but don't assign a value to it. Your hoisted variables
will also be automatically assigned a value of undefined.

33

5.0.4 number

possible values

-1 5 7 1.14 9.66e+0 Infinity -Infinity NaN

The number primitive helps us work with values in the numeric domain.

You can define negative and positive values, decimals (more commonly known as
floating-point numbers.) There is even a negative and positive Infinity value.
This makes more sense if you have some background in math.

NaN is technically a non-numeric value a statement can evaluate to. It's available
directly from the Number.NaN But literally, it is exactly what it says it is: neither
"number" primitive nor Number () object. (It could be a "string", for example.)

typeof constructor

"number" string new Number (value)

Using typeof operator on a numeric value will produce "number" (It helps to note
that the return value is in string format.)

001| // The typeof operator returns value type in string format

002 typeot -1; "number"

003 | typeof 5; "number"

004 | typeof 7; "number"

005

006| //Using Number constructor function to create a number
007| Llet number = new Number(7); "object"

008| typeof number; "object"

009| typeof number.valueOf(); "number"

This example shows distinction between primitive literal value (-1, 5, 7, etc.) and
the Number object. Once instantiated, the value is no longer exactly a literal but
an object of that type.

To get "number” type from the object use typeof on the valueOf method as
seen in the previous example typeof number.valueOf();

34

5.0.5 bigint

value

1n 32000n 9007199254740991n 9007199254740993

BiglInt was added in EcmaScript10 and wasn't available until Summer 2019.

In the past the maximum value of a number created using a number literal or the
Number() constructor was stored in Number .MAX_SAFE_INTEGER and was equal
to 9007199254740991.

A bigint type allows you to specify numbers greater than Number . MAX_SAFE_INTEGER.

typeof constructor

"bigint" string new BigInt (value)

001| const limit = Number.MAX_SAFE_INTEGER;

002|// 9007199254740991

003

004 | Limit + 1;

005| // 9007199254740992

006

007| Limit + 2;

008|// Still 9007199254740992 (exceeded MAX_SAFE_INTEGER + 1)
009

010| const small = 1n; // 1n

011| const larger = 9007199254740991n; // 9007199254740991n

012

013 | const dinteger = BigInt(9007199254740991); // init as number
014|// 9007199254740991n

015

016| const big = BigInt("9007199254740991"); // init as string
017|// 9007199254740991n

018

019| big + 1;

020/ // 9007199254740993n - exceeds older numeric limit

35

5.0.6 typeof

Difference between numeric types:

001
002

typeof 10; // '"number'
typeof 10n; // 'bigint'

Equality operators can be used between the two types

001
002

10n === BigInt(10); // true
10n == 10; // true

Math operators only work within their own type

001| 200n / 16n; // 20n

002| 200n / 20; // Uncaught TypeError:

003 // Cannot mix BigInt and other types,
004 // use explicit conversions

Leading - works, but 4 doesn’t

001| -1060n // -100n
002 +100n // Uncaught TypeError:
003 // Cannot convert a BigInt value to a number

36

5.0.7 string

value

"text" ‘text’ “text' ‘Cat "Felix" knows best®

The string value is defined using any of the available quote characters: double
quotes, single quotes, and back-tick quotes (Located on tilde key.) You can nest
double quotes inside single quotes, and the other way around.

typeof constructor

"string" string new String(value)

Running typeof on a string value returns "string":

001| // The typeof operator returns value type in string format

002| typeof "text"; "string"
003 | typeof "JavaScript Grammar"; "string"
004 | typeof "username" + 25; "string"

You can also use String constructor function to build an object of string type:

001| // Using Number constructor creates an object of that type
002| let string = new String("hi."); "object"
003 | typeof string; "object"
004 | typeof string.valueOf(); "string"

Note that the first typeof returns "object", because at this point the object is
instantiated (this is different from the primitive's literal value which is still just a
"string" primitive). To get the value of the instantiated object use value0Of ()
method and use typeof string.value0f () to determine the object’s type.

37

5.0.8 Template Strings

Strings defined using the backtick quotes have special function.

You can use them to create Template Strings (also known as Template Literals)
to embed dynamic variable values inside the string:

Define a variable:

let apples = 10;
Embed variable inside template string:

‘There are ${apples} apples in the basket.’
Result:

There are 10 apples in the basket.

The back-tick cannot be used to define an object-literal property name (You still
have to use either single or double quotes.)

JSON format requires double quotes around object’s property names (back-ticks
won't do any good here either, without generating an error):

001|// Attempt creating an object literal

002| let object_literal = {"a° : 1}; // Unexpected token error

003

004|// Attempt creating a well-formed JSON format string:

005|let jsonl = ’{'a’ : 1}’; // malformed json(back-tick quotes)
006|let json2 = ’{ a : 1}’; // malformed json(no quotes)

007|let json3 = "{’a’ : 1}"; // malformed json(single quotes)
008|let jsond4 = {"a" : 1}’; // correct json (’ + double quotes)
009|let json5 = “{"a" : 1}°; // correct json (° + double quotes)

We'll take a look at JSON in greater detail in a later chapter.

Creative Use Case
Template strings can be used to solve the problem of forming a message that has

proper language form, based on a dynamic number. One of the classic cases is
forming an alert message sentence.

38

001| for (let alerts = 0; alerts < 4; alerts++) {

002 let one = (alerts == 1); // one alert?

003 let is = one ? "4is" : "are"; // choose between "is" or "are
004 let s = one == 1?2 "" : "s"; // trailing "s" or empty space
005

006 // Form the message 1in proper English:

007 let message = "There ${is} S${alerts} alerts${s}. ;
008 console.log(message);

009}

Whenever there is only 1 alert, the trailing "s" in the word "alerts" must be
removed. But we don’t want to create a second string just to cover one case.

Instead, we can calculate it dynamically. We also need to decide which verb should
be used ("is" or "are") based on the number of alerts.

There are © aler‘.
Therel alert.
There are 2 aler‘.

There are 3 aler‘.
> |

Here the ternary operator consisting of 7 and : is used.

You can think of ternary operator as an inline if-statement. It doesn't need {}
brackets because it doesn't support multiple statements:

if else

let result = statement ? +wvalue : value ;

Question mark can be interpreted as "if-then" oras "if the previous statement
evaluates to true" and the colon : can be interpreted as "else".

39

5.0.9 Symbol

typeof constructor

"symbol" string none

The Symbol primitive provides a way to define a completely unique key.

Symbol doesn’t have a constructor and cannot be initialized using new keyword:

001\1et sym = new Symbol('sym'); // TypeError

Instead, just an assignment to Symbol will create a new symbol with a unique ID:

OOl\let sym = Symbol('sym'); // symbol created

The ID, however, is not the used-defined string "sym", it is created internally.
This is demonstrated in the following example.

At first it might be surprising that the following statement evaluates to false:

001‘Symbol('sym') === Symbol('sym'); // false

Whenever you call Symbol(’sym’) a unique symbol is created. The comparison
is made between two logically distinct IDs and therefore evaluates to false.

Symbols can be used to define private object properties. This is not the same
as regular (public) object properties. However, both public and private properties
created with symbols can live on the same object:

001| let sym
002 | let bol

Symbol('unique');

Symbol(distinct');

003| let one Symbol('only-one');

004 | let obj { property: "regular property",
005 [sym]: 1,

006 [bol]: 2 }%};

007 | obj[one] = 3;

40

Here we created an object obj, using object literal syntax, and assigned one of
its properties property to a string, while second property was defined using the
[sym] symbol created on the first line. [sym] was assigned value of 1. Second
symbol property [bol] was added in the same way and assigned value of 2.

Third object symbol property [one] was added directly to the object via obj[one].
Printing the object shows both private and public properties:

001| console.log(obj);

002| property: '"regular property"
003| Symbol(distinct): 2

004| Symbol(only-one): 3

005| Symbol(unique): 1

Private (symbol-based) properties are hidden from Object.entries, Object.keys
and other iterators (for example for...in loop):

004 | for (let prop in obj)

005 console.log(prop + ": " + obj[prop]l);
006| // property: regular property
007

008| console.log(Object.entries(obj));
009|// (2) ["property", "regular property"]
o10|// length: 1

In addition symbol properties are also hidden from JSON.stringify method:

001 | console.log(JSON.stringify(obj));
002| // {"property":"regular property"}
003

Why would we want to hide symbol-based properties from JSON stringify?

Actually it makes sense. What if our object needs to have private properties that
are only relevant to how that object works, and not what data it represents? These
private properties can be used for miscellaneous counters or temporary storage.

The idea behind private methods or properties is to keep them hidden from the
outside world. They are only needed for internal implementation. Private imple-
mentation is rarely important when it comes to marshalling objects.

41

But symbols can be exposed via Object.getOwnPropertySymbols method:

012| console.log(Object.getOwnPropertySymbols (obj));
013| // [Symbol(unique)]

014| // 0: Symbol(unique)

015|// 1: Symbol(distinct)

016| // 2: Symbol(only-one)

017| // length: 3

Note that you probably shouldn’t use Object.getOwnPropertySymbols to ex-
pose properties that are intended to be private. Debugging should be the only use
case for this function.

You can use symbols to separate your private and public properties. This is
like separating "goats from the sheep” because even though they provide simi-
lar functionality, symbols will not be taken into account when used in iterators or
console.log function.

Symbols can be used whenever you need unique IDs. Hence, they can also be used
to create constants in enumerable lists of IDs:

001| const seasons = {

002 Winter: Symbol('Winter');
003 Spring: Symbol('Spring');
004 Summer: Symbol('Summer');
005 Autumn: Symbol('Autumn')
006/| %

Figure 5.1: Enumerating seasons.

Global Symbol Registry

As we saw earlier Symbol ("string") === Symbol("string") is false because
two completely unique symbols are created.

But there is a way to create string keys that can overwrite symbols created using
the same name. There is a global registry for symbols, that can be accessed using
methods Symbol.for and Symbol.keyFor.

42

001| let sym
002| let bol
003

Symbol. for(rage');
Symbol. for(rage');

004 | obj[sym] = 20;

005| obj[bol] = 25;

006

007 | console.log(obj[sym]);
008| // 25

The private symbolic object property obj[sym] outputs the value of 25 (which
was originally assigned to obj[bol]) when it was defined, because both variables
sym and bol are tied to the same key "age" in global symbol registry.

In other words the definitions share the same key.

43

Constructors And Instances

There is a distinction between constructors and instances. The constructor
function is the definition of a custom object type. The instance is the object that
was instantiated from that constructor function using the new operator.

Let's create a custom Pancake constructor, containing one object property number
and one method bake () which will increase pancake number by 1 when called:

001| // Create a custom constructor function
002 | let Pancake = function() {

003 // Create object property:

004 this.number = 0;

005 // Create object method:

006 this.bake = function() {

007 console.log("Baking the pancake...");
008 // Increase number of pancakes baked:
009 this.number++;

010 }s

011 }

Note that properties and methods are attached to the object via this keyword

The constructor is only a design of the object type. In order to start using it, we
have to instantiate it. When we do that, an instance of the object is created in
computer memory:

001| // Instantiate pancake maker:
002 let pancake = new Pancake();

Let's bake 3 pancakes by using bake() method which increments pancake counter:

001| // Bake 3 pancakes:

002 | pancake.bake(); // "Baking the pancake..."
003 | pancake.bake(); // "Baking the pancake..."
004 | pancake.bake(); // "Baking the pancake..."

3 pancakes successfully baked! Let's take a look at pancake.number now:

OOl\console.log(pancake.number); // 3

44

You can look up the constructor function's type. The constructor function Pancake
is an object of type Function. This is true of all custom objects. It makes sense
because the function itself is the constructor:

001\console.log(Pancake.constructor); // function Function() {}

But, if you output constructor via the instantiated object, it will show you the
entire function body in string format:

001 | console. log(pancake.constructor);

002

003 | let Pancake = function() {

004 // Create object property:

005 this.number = 0;

006 // Create object method:

007 this.bake = function() {

008 console. log("Baking the pancake...")
009 F;

010/ }

You can actually create a brand new function by supplying the body in string
format to Function constructor:

001 | Llet body = '"console.log('Hello from f() function!')";
002

003| let f = new Function(body);

004

oos| f(); // Hello from f() function!

This tells us that Function is the constructor for creating JavaScript functions.

But when we created our own Pancake function, Pancake became the constructor
of our custom class that we could also initialize using the new keyword.

45

5.0.10 Executing Methods On Primitive Types
Parenthesis And Object Property Access

The parenthesis operator gives you control over which statement should evaluate
first. That's its primary purpose.

For example statement 5 * 10 + 2 is not the same as 5 * (10 + 2).

But sometimes it is used to access a member method or property. Which is
demonstrated in the next source code listing.

You can execute methods directly on the literal values of primitive types. Which
automatically converts them to objects, so that the method can be executed.

In some cases — like with the primitives of type "number" — we must first wrap
the literal value in parenthesis, or you'll freeze your program.

001| // We cannot execute Number object methods directly on literal values
002 1.toString(); // this will freeze execution flow
003

004| // But by using parenthesis, you can convert numeric literal to object
005, (1).toString(); // "1

006

007| // You don’t need parenthesis to execute methods on strings:

008 "hello".toUpperCase(); // "HELLO"

009

010| // But if you use them, it still works:

011 ("hello").toUpperCase(); // "HELLO"

012

013| // Execute toString() method directly on Number object:

014 new Number (1).toString(); // """

A literal is just a literal value. By accessing its properties, it turns into a reference
to the object instance so you can execute object methods on that value.

Chaining Methods

Because in JavaScript functions can return this keyword, or any other value,
including functions, it's possible to chain multiple methods using the dot operator.

"hello".toUpperCase() .substr(1, 4); // "ELLO"

46

Chapter 6

Type Coercion Madness

When learning JavaScript from scratch you may be puzzled by some decisions
made by the language when it comes to evaluating statements.

For example, what will happen if we sporadically add up different types of values
and stitch them together using the + operator?

001| console.log(null + {} + true + [] + [5]);

null[object Object]trues
> |

A string? This might seem confusing. After all, not a single value in this statement
is a string! So how did that happen?

Answer: When + operator encounters objects of incompatible type, it will attempt
to coerce those objects to their values in string format. In this case, leaving us
with a new statement: "null[object Object]" + true + [] + [5].

Furthermore, when + operator encounters a string at least on one side of the
operator, it will try to coerce the other side to string and perform string addition.

Calling .toString on true results in "true". Calling .toString on empty array
brackets [] when the other side of operator is also a string evaluates it to "" which
is why it appears missing from the result. And finally adding [5] to a string calls
[5].toString which results in "5".

47

6.0.1 Examples of Type Coercion

Here are some classic examples of type coercion.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016

// classic coersion cases sometimes produce surprising results

let
let
let
let
let
let
let
let
let
let
let
let
let
let
let

O3 3 ~AX4WYW 40 D QOO TOW

true + 1; //
true + true; //
true + false; //
llHe'L'LOll + n n + |lthere.ll;//
"Username" + 1523462; //
1/ "string"; //
NaN === NaN; //
(1] + [2]; //
Infinity; //
(1 + [1; //
Infinity; //
Infinity; //
Infinity; //
Infinity; //
(1 + {}; //

becomes 1 + 1 or 2
becomes 1 + 1 or 2
becomes 1 + 0 or 1
becomes "Hello there."
becomes "Usernamel523462"
NaN (not a number)
becomes false

becomes "12" <string>
remains Infinity
becomes "" <string>

is Infinity <number>
remains Infinity
remains Infinity
remains Infinity
becomes [object Object]

JavaScript will try to come up with best value available if you supply meaningless
combinations of types to some of its operators.

After all, what would it mean to "add" an object literal {} to an array [17 Exactly
— it doesn't make any sense. But by evaluating to object [] at least we don't
break the code in that one little odd case where it may happen.

This safety mechanism will prevent the program from breaking. In reality, however,
these types of cases will almost never happen. We can treat majority of these cases
as examples — not something you should be actually trying to do in code.

48

Type Coercion In Constructors

Coercion also occurs when we provide an initialization value to a type constructor:

001| let A
002| let B
003| let C

I

Boolean(true);
Boolean([]);
Boolean({});

/7
/7
//

true
true
true

In the last two cases we supplied an array literal {} and an object literal [] to
Boolean constructor. What does this mean? Not much, but the point is that at

least it evaluates to true in this odd case.

This is just a safety net to prevent bugs.

001
002
003
004
005
006
007
008

// Initialize some booleans based on

let
let
let
let
let
let
let

P

< C 0O

Boolean(false);
Boolean(NaN) ;
Boolean(null);
Boolean(undefined) ;
Boolean(''"');
Boolean(0);
Boolean(-0);

an argument
false
false
false
false
false
false
false

Meaningless values still evaluate to either true or false, because these are the
only values available for boolean types.

Other built-in data type constructors behave in the same way. JavaScript will try

to coerce to an ideal value specific to that type.

49

Type Coercion

Coercion is the process of converting a value from one type into another. For
example, number to string, object to string, string to number (if the entire string
consists of numeric characters) and so on...

But when values are used together with different operators not all cases are
straightforward to the untrained eye.

To someone new to the language, the following logic might seem obscure:
001 [1 == [1; // false

Let's say that it is false because two instances of [] are not the same, because
JavaScript == operator tests objects by reference and not by value.

001l let a = [];

002| a == a; // true

But this statement evaluates to true because variable a points to the same instance
of the array literal. They refer to the same location in memory.

But what about cases like this? Even though you would never write code like this
in production environment, it calls for understanding of type coercion:

002‘[] == ![j; // true

JavaScript will often coerce different types of values to either strings or numbers.
The Boolean type is no exception:

003| true + false; // 1

The above statement is the same as 1 + 0. And here’s the absolute classic:

001|/NaN == NaN; // false

These types of cases might appear bizarre at first, but as your knowledge of types
and operators deepens it will start to make a lot more sense.

50

Let's start simple. The unary plus and minus operators force the value to a number.
If the value is not a number, NaN is generated:

001 const s = "text";
002| console.log(-s); // NaN

Here unary minus (=) struggles to convert the string "text" to a number. What
does -"text" mean anyway? So it returns NaN because "text" is not a number.

Here is the same logic demonstrated using the Number type function:

001 | Number ("text"); // NaN ("text" is not a numeric string)
002| Number ("1") ; // 1 ("1" is a numeric string)

But when unary minus (=) is applied to a number, it produces expected value:

001 const a = 1;

002 | console.log(-a); // -1
003 |

004 | const b = 1;

005/ console.log(+b); // 1

This rule is specific to the unary operator.

Number And String Arithmetics

Naturally the arithmetic + operator requires two values.

001|5 + 73 // 12

If both values are integers, arithmetic operation is performed. If one of them is
a string then coercion happens and string addition is invoked.

If the type of the two values provided to the arithmetic + operator is different, this
conflict must be resolved. JavaScript will use type coercion to change one of
the values before evaluating the entire statement to a more meaningful result.

51

What will happen if left value is a string and right value is a number?

0o1| "1m + 1;// 2272

Here + is treated as a string addition operator. The right value is converted to
"1" via String(1) and then the statement is evaluated as follows:

001 |lll| + lllll; // llllll

In JavaScript there are actually three + operators: unary, arithmetic and string.

Here JavaScript treats + not as the unary addition operator, but as the arithmetic
addition operator instead. But... when it sees that one of the values is a string, it
invokes the string addition operator. It makes no difference whether the string is
on the left or right side. The statement still evaluates to a string:

001/ 1 + "ol"; // "lol"

Operators follow specific associativity rules. Like + and most other operators, the
arithmetic addition operator (+) is evaluated from left to right:

Left To Right

But the assignment operator is evaluated in right to left order:

let N = 2 ; undefined

Right To Left

Note that in example above, while N is assigned value of 2, the statement itself
evaluates to undefined.

52

6.0.2 Adding Multiple Values

Often you will encounter statements tied together by multiple operators. What
should the following statement evaluate to?

)

1 + 1 + 1 + 2 + "o

First, all of the purely numeric values will be combined, ending up with the sum
of 5 on the left hand side and "" on the right hand side:

5 + mnn ?

But this is still not enough to produce the final result. Adding a numeric value to a
string value will coerce the numeric value to a string and then add them together:

||5" + mnn ||5"

Finally we arrive at "5" in string format.

When adding numbers and strings, numeric values always take precedence. This
seems to be a trend in JavaScript. In the next example we we will compare numbers
to strings using the equality operator. JavaScript chooses to convert strings to
numbers first, instead of numbers to strings.

6.0.3 Operator Precedence

Some operators take precedence over others. What this means is that multiplica-
tion will be evaluated before addition.

Let's take this statement for example:

)

1 + 1+ 1 + 2 %"

53

Several things will happen here.

The string "" will coerce to 0 and 2 * 0 will evaluate to 0.

1 + 1 + 1 + 2 % mn ?
1+ 1 + 1+ 2 % 0 ?
1+ 1 +1 + 0 ?

3 + 0 3

After multiplication, the numbers 1 + 1 + 1 will be added up to produce 3.

Finally: 3 + O will evaluate to 3.

6.0.4 String To Number Comparison

When it comes to equality operator == numeric strings are evaluated to numbers
in the same way the Number(string) function evaluates to numbers (or NaN).

According to EcmaScript specification, coercion between a string and a numeric
value on both sides of the == operator can be visualized as follows.

Comparing Numeric String To Number

1 - nmqn

)

1 == 1 true

54

nqn P 1 ?
1 == 1 true

Comparing Non-Numeric String To Number

If the string does not contain a numeric value, it will evaluate to NaN and therefore
further evaluating to false:

1 —— ngn ?
1 == NaN false
ngn e 1 ?

NaN == 1 false

Other Comparisons

Other comparisons between different types (boolean to string, boolean to num-
ber, etc) follow similar rules. As you continue writing JavaScript code, you will
eventually develop intuition for them and it will become second nature.

The operator precedence and associativity table on the next page might help you
when things get tough.

55

6.0.5 Operator Precedence & Associativity Table

There are roughly 20 operator precedence levels. Parenthesis () overrides the
natural order. Red values are first in associativity order: for example, subtraction
operator subtracts blue from red. Assignment operators follow right to left order.

Operator
Precedence Visual

19 Grouping ()

18 Member Access 0.
Computer Member Access o0]
new (with argument list) new « ()

17 Function Call o®
new (without argument list) new

16 Postfix Increment ++
Postfix Decrement -

15 Logical NOT '!®
Bitwise NOT ~@
Unary Plus +@
Unary Negation -®
Prefix Increment ++@
Prefix Decrement --@
typeof typeof @
void void @
delete delete @

14 Multiplication o~
Division o/
Remainder ®%

13 Addition o+
Subtraction ®-

12 Bitwise Left Shift ®<<
Bitwise Right Shift ®o>>
Bitwise Unsigned Right Shift @>>>

11 Less Than o<
Less Than or Equal 0<=
Greater Than ®>
Greater Than or Equal ®>-

56

in ®@ind®

instanceof @® instanceof ®
10 Equality ®o=-=-0
Inequality o'=-0
Strict Equality ===
Strict Inequality ®'=-=-0
9 Bitwise AND &0
8 Bitwise XOR " WX)
7 Bitwise OR o o
6 Logical AND Q&0
5 Logical OR oo
4 Conditional 0’°0:0
3 Assignment o-0
o+=0
o-=-0
0+=0
®/-0
0%=-0
0<k=0
0>>=0
0>>>=0
0&=0
or=0
o|=0
2 yield yield @
1 Spread ce
®@ Comma /Sequence ®:;0

Associativity flows in either left-to-right or right-to-left direction: it determines
the order of the operation, usually for operators that require more than one value.

57

6.0.6 L-value and R-value

In many computer languages values on the left and right side of the operator are
referred to as L-value and R-value. In EcmaScript spec they are often referred
to as x and y values.

Assignment Operator

The assignment operator takes the R-value and transfers it over to L-value, which
is usually a variable identifier name.

®-0

Arithmetic Addition Operator

But the arithmetic addition operator takes the L-value and adds R-value to it:

-0

Following this logic, it is possible to use the precedence table from the previous
page to figure out the order in which complex statements will be evaluated.

58

6.0.7 null vs undefined

The null primitive is not an object (although some may believe it is,) — so it
doesn’t have a built in constructor, like some of the other types. Luckily, we can
(and should) use its literal value: null.

Think of null as a unique type for explicitly assigning a "nothing” or "empty"”
value to a variable. This way it doesn't end up undefined.

If you don't assign a variable to null, its value will be undefined by default:
001| // Define a variable, without assigning a value(not so good.)
002| let bike;

003
004 | console.log(bike); // undefined

To same effect, you can also explicitly assign variable to undefined:

001| // Explicitly assign undefined as default variable name
002| let bike = undefined;

003

004 | console.log(bike); // undefined

But that’s something we should avoid. If the value is unknown at the time of
variable definition it is always best to use null instead of undefined.

The null keyword is used to assign a temporary default value to a variable before
it's populated with actual object data at a later time in your program.

Initialize or Update

In a real-case scenario the null value can help us determine whether the data needs
to be initialized for the first time, or existing data merely needs to be updated.

We'll take a look at a practical example in the next source code listing.

59

Let's take a look at this scenario:

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
01le
017
018
019
020
021
022
023
024
025
026
027
028

// Explicitly assign null as default variable name
let bike = null;

// Class definition
class Motorcycle {
constructor (make, model, year) {
this.make = make;
this.model = model;
this.year = year;
this.features = null;

¥
getFeatures() {

// 1.) Download features from database for the first time
if (this.features == null) {
this.features = { /* get features from database x/ }

// 2.) Or update features object if it already contains data
1 else {
this. features = { /* get features from database =/ }
¥
¥

// Instantiate new bike class
bike = new Motorcycle("Kawasaki", "Z90ORS CAFE", 2019);

// Get features from database
bike.getFeatures();

Here we assigned null to bike. Later at some point in code, the variable was
instantiated with a real object. At no point in our program bike was undefined,
even before it was initialized for the first time.

Inside the object itself, the this.features property was also assigned to null.
Maybe at a later time, we can download feature list from a database. Until then,
we can be sure that feature object was not yet populated.

This gives us a distinction between two classic cases: downloading data for the first
time (if this.features == null) or updating existing data (that has already
been downloaded at some point in the past.)

60

Chapter 7

Scope

61

7.0.1 Scope

Scope is simply the area enclosed by {} brackets. But be careful not to confuse it
with the identical empty object-literal syntax.

There are 3 unique scope types:

The global scope, block scope and function scope. Each expects different things
and has unique rules when it comes to variable definitions.

Event callback functions follow the same rules as function scope, they are just
used in a slightly different context. Loops can also have their own block-scope.

7.1 Variable Definitions

Case-Sensitivity

Variables are case-sensitive. This means a and A are two different variables:

001| let a = 1;

002| let A = "hello";

003

004 | console.log(a); // 1

005| console.log(A); // "hello"
Definitions

Variables can be defined using var, let or const keywords.

Of course, if you tried to refer to a variable that wasn't defined anywhere, you
would generate a ReferenceError error " variable name is not defined" :

001| console.log(apple); // ReferenceError: apple is not defined
002

003| {

004

005/ }

Let's use this setup to explore variable definitions using var keyword and hoisting.

62

Prior to let and const the traditional model allowed only var definitions:

001 var apple = 1;

002

003 {

004 console.log(apple); // 1

005 }

Here apple is defined in global scope. But it can also be accessed from an inner
block-scope. Anything (even a function definition) defined in global scope becomes
available anywhere in your program. The value propagates into all inner scopes.

When a variable is defined in global scope using var keyword, it also automatically
becomes available as a property on window object.

var visibility definition
Global Scope

block scope

Hoisting
If apple was defined using var keyword inside a block-scope, it would be hoisted
back to global scope! Hoisting simply means "raised” or "placed on top of”.

Hoisting is limited to variables defined using var keyword and function name de-
fined using function keyword.

Variables defined using let and const are not hoisted and their use remains limited
only to the scope in which they were defined.

As an exception, variables defined var keyword inside function-level scope are not
hoisted. Commonly, when we talk about hoisting block-scope is implied.

We will talk more about hoisting in just a moment!

63

Likewise, variables defined in global scope will propagate to pretty much every
other scope defined in global context, including block-level scope, for-loop scope,
function-level scope, and event callback functions created using setTimeout,
setInterval or addEventListener functions.

var visibility definition

Global Scope

block scope

for-1loop scope

function scope

setTimeout event callback scope

addEventListener event callback scope

But what happens if we define a variable inside a block scope?

001 console.log(apple); // undefined
002

003/ {

004 var apple = 1;

005 }

undefined

Global Scope

block scope

04

Variable apple is hoisted to global scope. But the value of the hoisted variable is
now undefined — not 1. Only its name definition was hoisted.

Hoisting is like a safety feature. You should not rely on it when writing code. You
may not retain the value of a hoisted variable in global scope, but you will still
save your program from generating an error and halting execution flow.

Thankfully, hoisting in JavaScript is automatic. When writing your program more
than half of the time, you won't even need to think about it.

Function Name Hoisting

Hoisting also applies to function names. But variable hoisting always takes prece-
dence. We'll see how that works in this section.

You can call a function in your code, as long as it is defined at some point later:

001| fun(); // Hello from fun() function.

002

003| function fun() {

004 console.log("Hello from fun() function.");
005 }

Note that the function was defined after it was called. This is legal in JavaScript.
Just make sure you understand that it happened because of function name hoisting:

o Global Scope
f() // call

f{} // define

It goes without saying if the function was already defined prior to being called,
there'd be no hoisting but everything would still work as planned. Statements inside
a function’s body are executed when the function is called by its name. Nameless
functions can still be assigned as values themselves. (See next example.)

65

001 | function fun() {

002 console.log("Hello from fun() function 1.");
003 }

004
005| // The code above 1is the same as:

006 | var fun = function() {

007 console.log("Hello from fun() function 2.");
008 }

It is possible to assign an anonymous function expression to a variable name.

It's important to note, however, that anonymous functions that were assigned to
variable names are not hoisted unlike named functions.

This valid JavaScript code will not produce a function redefinition error. The
function will be simply overwritten by second definition.

Even though fun() was a function, when we created a new variable fun and
assigned another function to it, we rewired the name of the original function.

Having said this, what do you think will happen if we call fun() at this point?

oo1| fun(); // ?

Which function body will be executed?

\”Hello from fun() function 2."

You might think that the following code will produce a redefinition error:

001 | function fun() {

002 console.log("Hello from fun() function 1.");
003 }

004
005 | function fun() {

006 console.log("Hello from fun() function 2.");
007/ }

However, this is still perfectly valid code — no error is generated. Whenever you
have two function defined using function keyword and they happen to share the
same name, the function that was defined last will take precedence.

66

In this case if you call fun() ; the console will output the second message:

\”Hello from fun() function 2."

This actually makes sense.

In following scenario variable name will take precedence over function definitions
even if it was defined prior to the second function definition with the same name:

001| var fun = function() {

002 console.log("Hello from fun() function 1.");
003 }

004
005| function fun() {

006 console.log("Hello from fun() function 2.");
007 }

And now let's call fun() to see what happens in this case:

oo1| fun(); // ?

But this time the output is:

\”Hello from fun() function 1."

You can see the order in which JavaScript hoists variables and functions. Functions
are hoisted first. Then variables.

Defining Variables Inside Function Scope

At this point you might want to know that variables defined inside a function will
be limited only to the scope of that function. Trying to access them outside of
the function will result in a reference error:

001| function fun() {

002 var apple = 1;

003 }

004

005| console.log(apple); // ReferenceError: apple is not defined

67

Simple scope accessibility rules:

var

Global Scope

block scope 1

Figure 7.1: Here var is defined in Global Scope, but its value propagates into the
block scope as well. What actually happens is, when block scope 1 cannot find
var definition in within its own brackets, it looks for it in the parent scope. If it
finds it there, it inherits its value.

var

v Global Scope

X function scope

Figure 7.2: Defining variables inside function scope is basically one way street
ordeal. Nothing can leave the confines of a function into its parent scope.

Functions enable closure pattern, because their variables are concealed from global
scope, but can still be accessed from other function scopes within them:

var
-‘V\ Global Scope
X -~ function scope
y \ function scope

Figure 7.3: Nothing can get out of function scope into its outer scope. This
enables the closure pattern. We'll take a look at it in just a moment!

68

The idea is to protect variables from the global scope but still be able to call the
function from it. We'll take a look at this in greater detail in just a moment.

69

7.1.1 Variable Types

JavaScript is a dynamically-typed language.

The type of the variable (defined using var or let keyword) can be assigned and
changed at any time during the run-time of your application, after it was already
compiled by browser's JavaScript engine.

The keywords var, let and const do not determine the variable's type. Instead,
they determine how the variable can be used: can it be used outside of the scope
in which defined? Can it be re-assigned to another value during run-time? For
example, var and let can, but const can't.

var

The var keyword is still with us from original specification. You should probably
start using let and const instead. For the most part it is still available but only
to support legacy code.

let

let defines a variable but limits its use to the scope in which it was defined.

const

const is the same as let but you can’t re-assign it to a new value once defined.

7.1.2 Scope Visibility Differences

No Difference In Global Scope

When variables are defined in global scope there is no differences between var, let
and const in terms of scope visibility.

70

They all propagate into inner block-level, function-level and event callback scopes:

evar Hmlet Aconst

; : Global Scope
ondaA block scope 1
oA block scope 2
ongd A block scope 3
OO A funQ function scope

O O A setTimeout() callback scope

O O A visibility ® B A definition

Keywords let and const limit variable to the scope in which they were defined:

evar Hmlet Aconst

defined
©undetine Global Scope

O undefined block scope 1
O undefined block scope 2
Ol W\ block scope 3
onOaA
O O A visibility ©® B A definition

Variables defined using let and const are not hoisted. Only var is.

71

In Function Scope

However, when it comes to functions, all variable types, including var remain
limited to their scope:

evar Hmlet Aconst

Global Scope

block scope 1
block scope 2
block scope 3

fun()

ce

Oom
> >

function scope

O O A visibility ©® B A definition

You cannot access variables outside of the function scope in which they were
defined regardless of which keyword was